• Title/Summary/Keyword: Eulerian-Lagrangian method

Search Result 211, Processing Time 0.025 seconds

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Numerical Simulation of Impact and Dynamic Deformation Based on Two-Step Eulerian Method (Two-Step Eulerian 기법 기반 충돌 및 동적 변형 해석)

  • 백승훈;이민형;김승조
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.47-54
    • /
    • 2006
  • In this paper, numerical algorithms applied in two-step eulerian scheme are investigated and implemented. Element quantities are advected with donor or van Leer algorithm. Nodal quantities are advected with Simplifed ALE [SALE] algorithm. Material interfaces are determined with Simple Line Interface Calculation [SLIC] algorithm. Practical aspects considered for code development are addressed in detail. The results of developed two-step Eulerian code are verified by comparing with those from pure lagrangian scheme and commercial code.

Free Surface Analysis in Pipe Flows using the ALE Method (ALE를 이용한 관내 유동의 자유경계면 해석)

  • You, Jung-Doo;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.748-751
    • /
    • 2011
  • 일반적으로 물체의 거동을 해석하기 위해 고체영역에서는 Lagrangian 기법이 유체영역에서는 Eulerian 기법이 수치해석에 적용된다. Lagranian 기법은 서로 다른 물질의 경계와 자유표면에 대한 거동을 쉽게 추적할 수 있는 반면 물체의 대변형시 해석의 정확성이 떨어지는 단점이 있다. 또한 Eulerian 기법은 물질이동만을 고려하여 변형의 제한이 없는 장점을 가지고 있지만 이동하는 경계에 대해서 조건을 변화 시켜야하는 어려움이 있다. 따라서 이 두기법의 장단점을 서로 보안하기 위해 ALE(Arbitrary Lagrangian Eulerian)기법이 제안되었으며 이를 적용한 유체-구조물의 상호작용 해석에 대하여 많은 연구가 진행되고 있다. 본 논문에서는 이러한 ALE기법을 이용한 자유경계면에 대한 새로운 알고리즘이 제안된다.

  • PDF

Prediction of Pollutant Transport using by Eulerian-lagrangian (Eulerian-Lagrangian Analysis(ELA) 모형을 이용한 오염물질이동 예측)

  • 최병옥;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.128-140
    • /
    • 1994
  • Coastal areas, especially embayments are apt to be polluted easily and many embayments in Korea are already suffering from pollution problems. To manage such pollution, it is strongly needed to develop technique to trace movements of pollution. Such technique cove- ring the embayment affected by the tidal influence, should take account both of the convection and the diffusion motions which cause lots of problems in numerical calculation. In this study, a Eulerian-Lagrangian Analysis(ELA) model was applied to Young Il bay and tested for its applicablity, which was developed by using the Eulerian-Lagrangian Method that reduce the numerical disperison and oscillation by way of solving convection and diffusion terrns separately. Concentration of Chemical Oxygen Demand(COD) and Suspend Solid(SS) of the embay- ment area were estimated by the model and compared with the observed values and the sound results were obtained. At the same time the diffsion coefficient and decay coefficient for Chemical Oxygen Demand in the Young II Bay were found as Dx = Dy = 20m$^2$/sec, kd=2.5 ${\times}$ 10-5/sec respectively, and for Suspend Solid, Dx =Dy = 30m$^2$/sec, kd=5.0${\times}$ 10-5/sec

  • PDF

Arbitrary Lagrangian Eulerian (ALE) Formulations of Saturated Porous Media (포화 다공질 매체의 Arbitrary Lagrangian Eulerian (ALE) 정식화)

  • 박대효;정소찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.235-242
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects such as flow of the fluids or thermodynanical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of the solids and the fluids. In this work, governing equations of porous media based on ALE description are obtained from governing equations in frame of updated Lagrangian description. Then, weak forms of these equations are derived using arbitrary weighting functions.

  • PDF

Computation of Pressure Fields in the Lagrangian Vortex Method (Lagrangian 보오텍스 방법에서의 압력장 계산)

  • 이승재;김광수;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

ELLAM(Eulerian Lagrangian Localized Adjoint Method)의 수치적 고찰

  • Seok Hui-Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.135-138
    • /
    • 2005
  • 최근에 ELLAM 기법을 이용한 오염물 거동 문제를 많은 사람들이 다루어 오고 있다. ELLAM 기법은 기존의 Eulerian-Lagrangian 방식에서 일어나는 질량보존 문제점과 일반경계조건의 체계적인 적용 한계점을 극복하였다. 그러나 본 연구에서는 이 방식의 장단점을 네 개의 예제를 통하여 다른 모델들과 비교 검토하여 ELLAM의 수치적 고찰을 수행하고자 한다. 예제 수행 결과 Mesh Peclet Number가 무한대일때 ELLAM은 수치확산 및 수치진동과 같은 수치오차로 인해 음수의 농도 값을 갖거나 1 보다 큰 농도를 갖는 경향을 보인다. 그러나 Mesh Peclet Number 50 일때는 전체적으로 해석해와 잘 일치함을 볼 수 있다. 반면, LEZOOMPC(Lagrangian-Eulerian ZOOMing Peak and valley Capturing)는 항상 좋은 결과를 보여주고 있다. 따라서 위의 결과를 종합하여 볼 패 ELLAM의 단점은 LEZOOMPC의 성질을 이용하여 개선 및 보완될 수 있음을 간접적으로 시사해준다. 즉 LEZOOMPC에서 사용되는 선택적 국부 격자 세립화 과정을 이용하면 ELLAM에시 일어나는 다양한 수치오차를 줄일 수 있을 것이라고 판단된다.

  • PDF

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park Il-Ryong;Chun Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.105-110
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method (Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구)

  • Kim, Sa-Yop;Oh, Yun-Jung;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies (ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF