• 제목/요약/키워드: Eulerian-Lagrangian coupling

검색결과 29건 처리시간 0.025초

포화 다공질 매체의 Arbitrary Lagrangian Eulerian (ALE) 정식화 (Arbitrary Lagrangian Eulerian (ALE) Formulations of Saturated Porous Media)

  • 박대효;정소찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.235-242
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects such as flow of the fluids or thermodynanical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of the solids and the fluids. In this work, governing equations of porous media based on ALE description are obtained from governing equations in frame of updated Lagrangian description. Then, weak forms of these equations are derived using arbitrary weighting functions.

  • PDF

Eulerian-Lagrangian 방법에서 입자 및 유동 격자계 분리를 통한 2상 유동의 효율적 계산 (Efficient Computation of Two-Phase Flow by Eulerian-Lagrangian Method Using Separate grids for the Particles and Flow Field)

  • 박순일;이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 2003
  • When the Eulerian-Lagrangian method is used to analyze the particle laden two-phase flow, a large number of particles should be used to obtain statistically meaningful solutions. Then it takes too much time to track the particles and to average the particle properties in the numerical analysis of two-phase flow. The purpose of this paper is to reduce the computation time by means of a set of particle gird separate to the flow grid. Particle motion equation here is the simplified B-B-O equation, which is integrated to get the particle trajectories. Particle turbulent dispersion, wall collision, and wall roughness effects are considered but the two-way coupling effects between gas and particles are neglected. Particle laden 2-D channel flow is solved and it is shown that the computational efficiency is indeed improved by using the current method

  • PDF

Lagrangian 보오텍스 방법에서의 압력장 계산 (Computation of Pressure Fields in the Lagrangian Vortex Method)

  • 이승재;김광수;서정천
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화 (Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description)

  • 박대효;정소찬;김원철
    • 한국지반환경공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.5-10
    • /
    • 2003
  • 다공질 매체 속의 내부 구조를 이루고 있는 고체 부분과 유체 부분은 서로 다른 재료특성을 가지는 물체들로 구성되어 있고 각 구성물들은 서로 다른 물리적 성질과 화학적 성질을 가지면서 서로 다른 상대 속도를 가지고 이동하기 때문에 포화된 다공질 매체의 구조적 변형 거동을 해석하는 것은 매우 복잡하다. 변형 거동에 영향을 주는 여러 가지 복합적인 요인들이 고려된 다공질 매체의 변형 거동을 해석하고 규명하기 위하여 Arbitrary Lagrangian Eulerian(ALE) 정식화가 이루어진 구성방정식을 세워야 할 필요가 있다. ALE 정식화는 Lagrangian 요소와 Eulerian 요소의 장점을 최대화 시키고 단점을 최소화 시키는 것에 주안점을 두기 때문에 고체 부분과 유체 부분을 함께 고려해야 하는 다공질 매체의 변형 거동을 해석하는데 있어서 적합한 방법이라고 할 수 있다. 그렇기 때문에 여기서는 포화된 다공질 매체의 보존 법칙들에 대한 ALE 정식화가 이루어진다. 고체 부분과 유체 부분의 질량 보존 법칙에 대하여 ALE 정식화가 이루어진 식이 각각 표현되고 다공질 매체 전체에 대한 운동량 보존 법칙이 표현된다.

  • PDF

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF

Lagrangian 보우텍스방법에서의 압력장계산 (Computation of pressure fields in application of the Lagrangian vortex method)

  • 김광수;이승재;서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF

Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구 (Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method)

  • 김사엽;오윤중;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

고체 로켓 내부 그레인 유체-구조-연소 통합 해석 (ALE based Fluid-Structure-Interaction Simulation of Solid Propellant Rocket)

  • 한상호;최희성;민대호;황찬규;김종암
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문은 유동과 구조물간의 상호작용으로 인해 유체나 구조, 한 쪽 분야에서의 접근으로는 한계가 있는 고체 로켓 내부 유동-구조-연소 결합 문제를 해결하기 위해 FSI를 이용한 전산해석을 목적으로 한다. ALE(Arbitrary Lagrangian Eulerian) 기술 방식을 도입하여 계산 격자의 움직임을 허용하면서도 격자에 대한 연속체 입자의 상대운동이 가능하도록 하였다. 유체 영역의 해석 프로그램은 2차원 압축성 비정상 유동 해석을 위한 오일러 방정식을 ALE 형태를 변형시켜 적용 하였고, 고체 영역의 해석 프로그램은 ALE를 고려한 2차원 동적 유한 요소 방법을 사용하였다.

  • PDF