• Title/Summary/Keyword: Eulerian integrals

Search Result 7, Processing Time 0.021 seconds

ON EULERIAN q-INTEGRALS FOR SINGLE AND MULTIPLE q-HYPERGEOMETRIC SERIES

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.179-196
    • /
    • 2018
  • In this paper we extend the two q-additions with powers in the umbrae, define a q-multinomial-coefficient, which implies a vector version of the q-binomial theorem, and an arbitrary complex power of a JHC power series is shown to be equivalent to a special case of the first q-Lauricella function. We then present several q-analogues of hypergeometric integral formulas from the two books by Exton and the paper by Choi and Rathie. We also find multiple q-analogues of hypergeometric integral formulas from the recent paper by Kim. Finally, we prove several multiple q-hypergeometric integral formulas emanating from a paper by Koschmieder, which are special cases of more general formulas by Exton.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

GENERALIZED DOUBLE INTEGRAL INVOLVING KAMPÉ DE FÉRIET FUNCTION

  • Kim, Yong-Sup;Ali, Shoukat;Rathie, Navratna
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • The aim of this paper is to obtain twenty five Eulerian type double integrals in the form of a general double integral involving Kamp$\'{e}$ de F$\'{e}$riet function. The results are derived with the help of the generalized classical Watson's theorem obtained earlier by Lavoie, Grondin and Rathie. A few interesting special cases of our main result are also given.

GENERALIZED SINGLE INTEGRAL INVOLVING KAMPEÉ DE FÉRIET FUNCTION

  • Kim, Yong Sup;Ali, Shoukat;Rathie, Navratna
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • The aim of this paper is to obtain twenty five Eulerian type single integrals in the form of a general single integral involving $Kamp\acute{e}$ de $F\acute{e}riet$ function. The results are derived with the help of the generalized classical Watson's theorem obtained earlier by Lavoie, Grondin and Rathie. A few interesting special cases of our main result are also given.

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF