• 제목/요약/키워드: Euler-Bernoulli beam

검색결과 425건 처리시간 0.027초

Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Ziane, Noureddine;Mechab, Ismail
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.489-504
    • /
    • 2011
  • This paper presents a theoretical investigation in free vibration of sigmoid functionally graded beams with variable cross-section by using Bernoulli-Euler beam theory. The mechanical properties are assumed to vary continuously through the thickness of the beam, and obey a two power law of the volume fraction of the constituents. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of the S-FGM beam are obtained for three different types of boundary conditions associated with simply supported, clamped and free ends. Results show that, all other parameters remaining the same, the natural frequencies of S-FGM beams are always proportional to those of homogeneous isotropic beams. Therefore, one can predict the behaviour of S-FGM beams knowing that of similar homogeneous beams.

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih;Pakdemirli, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.171-178
    • /
    • 2017
  • Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

Analytical solutions for bending of transversely or axially FG nonlocal beams

  • Nguyen, Ngoc-Tuan;Kim, Nam-Il;Lee, Jaehong
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.641-665
    • /
    • 2014
  • This paper presents the analytical solutions for the size-dependent static analysis of the functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is assumed to vary through the thickness or longitudinal directions according to the power law. The governing equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with various boundary conditions. The verification of the model is obtained by comparing the current results with previously published works and a good agreement is observed. Numerical results are presented to show the significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length of beams on the bending behavior of nonlocal FG beams.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

Nonlinear dynamics of SWNT reinforced Aluminium alloy beam

  • Abdellatif Selmi;Samy Antit
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.407-416
    • /
    • 2024
  • The main objective of the present paper is to investigate the nonlinear vibration of buckled beams fixed at both ends and made of Aluminium allay (Al-alloy) reinforced with randomly dispersed Single Walled Carbon Nanotube (SWNT). The Mori-Tanak (M-T) micromechanical approach is selected to predict the homogenized material properties of the beams. The differential equation of motion governing the nonlinear behavior of the Euler-Bernoulli homogeneous beam is solved using an analytical method. The influences of diverse parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency are studied.

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • 제6권3호
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

크랙을 가진 회전 외팔보의 동특성 해석 (Dynamic Behavior of Rotating Cantilever Beam with Crack)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.