Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.2.185

A new solution for dynamic response of FG nonlocal beam under moving harmonic load  

Hosseini, S.A.H. (Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University)
Rahmani, O. (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan)
Bayat, S. (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan)
Publication Information
Steel and Composite Structures / v.43, no.2, 2022 , pp. 185-200 More about this Journal
Abstract
A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.
Keywords
closed-form solution; dynamic response; FG Nano beam; moving harmonic load; nonlocal elasticity theory;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Faghidian, S.A. (2018), "Integro-differential nonlocal theory of elasticity", Int. J. Eng. Sci., 129 96-110. https://doi.org/10.1016/j.ijengsci.2018.04.007.   DOI
2 Faghidian, S.A. (2018), "On non-linear flexure of beams based on non-local elasticity theory", Int. J. Eng. Sci., 124 49-63. https://doi.org/10.1016/j.ijengsci.2017.12.002.   DOI
3 Barretta, R., Faghidian, S.A. and Luciano, R. (2019), "Longitudinal vibrations of nano-rods by stress-driven integral elasticity", Mech. Adv. Mater. Struct., 26(15), 1307-1315. https://doi.org/10.1080/15376494.2018.1432806.   DOI
4 Barretta, R., Faghidian, S.A. and Marotti de Sciarra, F. (2019), "Stress-driven nonlocal integral elasticity for axisymmetric nano-plates", Int. J. Eng. Sci., 136 38-52. https://doi.org/10.1016/j.ijengsci.2019.01.003.   DOI
5 Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mechanica. 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z.   DOI
6 Fang, B., Zhen, Y.X., Zhang, C.P. and Tang, Y. (2013), "Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory", Appl. Mathem. Modelling. 37(3), 1096-1107. https://doi.org/10.1016/j.apm.2012.03.032.   DOI
7 Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2019), "An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories", J. Thermal Stresses. 1-18. https://doi.org/10.1080/01495739.2019.1666694   DOI
8 Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Europ. Phys. J. Plus. 135(1), 35. https://doi.org/10.1140/epjp/s13360-019-00037-8.   DOI
9 Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25-36. https://doi.org/10.12989/anr.2020.8.1.025.   DOI
10 Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2019), "Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control. 1077546319890170. https://doi.org/10.1177/1077546319890170.   DOI
11 Bahrami, A., Zargaripoor, A., Shiri, H. and Khosravi, N. (2019), "Size-dependent free vibration of axially functionally graded tapered nanorods having nonlinear spring constraint with a tip nanoparticle", J. Vib. Control, 2769-2783. https://doi.org/10.1177%2F1077546319870921.   DOI
12 Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Europ. Phys. J. Plus. 135(2), 183. https://doi.org/10.1140/epjp/s13360-020-00207-z.   DOI
13 Barretta, R., Faghidian, S.A., Marotti de Sciarra, F., Penna, R. and Pinnola, F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233 111550. https://doi.org/10.1016/j.compstruct.2019.111550.   DOI
14 Barretta, R., Luciano, R., de Sciarra, F.M. and Ruta, G. (2018), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Europ. J. Mech.-A/Solids. 72 275-286. https://doi.org/10.1016/j.euromechsol.2018.04.012.   DOI
15 Barretta, R., Luciano, R., Marotti de Sciarra, F. and Ruta, G. (2018), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Europ. J. Mech. - A/Solids. 72 275-286. https://doi.org/10.1016/j.euromechsol.2018.04.012.   DOI
16 Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Archve. Mech. Eng., 66(4), 417. http://dx.doi.org/10.24425/ame.2019.131355.   DOI
17 Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and Marotti de Sciarra, F. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci.. 133 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002.   DOI
18 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature. 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
19 Khosravi, F., Hosseini, S.A. and Hamidi, B.A. (2020), "On torsional vibrations of triangular nanowire", Thin-Wall. Struct., 148 106591. https://doi.org/10.1016/j.tws.2019.106591.   DOI
20 Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica. 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031.   DOI
21 Eltaher, M., Khairy, A., Sadoun, A. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Mathem. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.   DOI
22 Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathema. Modelling. 43 191-206. https://doi.org/10.1016/j.apm.2016.10.061.   DOI
23 Kiani, K. (2010), "Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects", Physica E: Low-dimensional Syst. Nanostruct., 42(9), 2391-2401. https://doi.org/10.1016/j.physe.2010.05.021.   DOI
24 Kiani, K. (2014), "Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials", Compos. Struct., 107 610-619. https://doi.org/10.1016/j.compstruct.2013.07.035.   DOI
25 Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023.   DOI
26 Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7.   DOI
27 Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Mathem. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.   DOI
28 Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.   DOI
29 Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.   DOI
30 Li, C., Li, S., Yao, L. and Zhu, Z. (2015), "Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Mathem. Modelling. 39(15), 4570-4585. https://doi.org/10.1016/j.apm.2015.01.013.   DOI
31 Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023.   DOI
32 Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlinear Sci. Numer. Simulat., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043.   DOI
33 Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and Marotti de Sciarra, F. (2019), "Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams", Compos. Part B: Eng., 164 667-674. https://doi.org/10.1016/j.compositesb.2018.12.112.   DOI
34 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.   DOI
35 Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123. https://doi.org/10.1016/j.commatsci.2011.02.017.   DOI
36 Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123 105-111. https://doi.org/10.1016/j.compositesb.2017.03.057.   DOI
37 Aydogdu, M. and Elishakoff, I. (2014), "On the vibration of nanorods restrained by a linear spring in-span", Mech. Res. Commun., 57 90-96. https://doi.org/10.1016/j.mechrescom.2014.03.003.   DOI
38 Kiani, K. (2011), "Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory", J. Sound Vib., 330(20), 4896-4914. https://doi.org/10.1016/j.jsv.2011.03.033.   DOI
39 Murmu, T. and Pradhan, S. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019.   DOI
40 Ozgur Yayli, M. (2018), "An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach", J. Vib. Control. 24(11), 2230-2246. https://doi.org/10.1177%2F1077546316684042.   DOI
41 Romano, G. and Barretta, R. (2017), "Nonlocal elasticity in nanobeams: the stress-driven integral model", Int. J. Eng. Sci., 115, 14-27. https://doi.org/10.1016/j.ijengsci.2017.03.002.   DOI
42 Wang, C., Zhang, Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904.   DOI
43 Zarepour, M., Hosseini, S. and Akbarzadeh, A. (2019), "Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model", Appl. Mathem. Modelling, 69, 563-582. https://doi.org/10.1016/j.apm.2019.01.001.   DOI
44 Barretta, R., Canadija, M., Luciano, R. and de Sciarra, F.M. (2018), "Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams", Int. J. Eng. Sci., 126 53-67. https://doi.org/10.1016/j.compositesb.2017.12.022.   DOI
45 Bahrami, A. (2017), "Free vibration, wave power transmission and reflection in multi-cracked nanorods", Compos. Part B: Eng., 127 53-62. https://doi.org/10.1016/j.compositesb.2017.06.024.   DOI
46 Barretta, R. and Marotti de Sciarra, F. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130 187-198. https://doi.org/10.1016/j.ijengsci.2018.05.009.   DOI
47 Barretta, R., Canadija, M., Feo, L., Luciano, R., Marotti de Sciarra, F. and Penna, R. (2018), "Exact solutions of inflected functionally graded nano-beams in integral elasticity", Compos. Part B: Eng., 142 273-286. https://doi.org/10.1016/j.compositesb.2017.12.022.   DOI
48 Rahmani, O., Norouzi, S., Golmohammadi, H. and Hosseini, S. (2017), "Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects", Mech. Adv. Mater. Struct., 24(15), 1274-1291. https://doi.org/10.1080/15376494.2016.1227504.   DOI
49 Rahmani, O., Shokrnia, M., Golmohammadi, H. and Hosseini, S. (2018), "Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory", Europ. Phys. J. Plus. 133(2), 1-13. https://doi.org/10.1140/epjp/i2018-11868-4.   DOI
50 Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 0954406220903341.
51 Wang, C., Zhang, Y. and He, X. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology. 18(10), 105401.   DOI
52 Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B. 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008.   DOI
53 Romano, G., Luciano, R., Barretta, R. and Diaco, M. (2018), "Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours", Continuum Mech. Thermodyn., 30(3), 641-655. https://doi.org/10.1007/s00161-018-0631-0.   DOI
54 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express. 4(8), 085013.   DOI
55 Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E: Low-Dimens. Syst. Nanostruct., 43(1), 182-191. https://doi.org/10.1016/j.physe.2010.07.003.   DOI
56 Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006.   DOI
57 Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F. and Medaglia, C.M. (2019), "A stress-driven local-nonlocal mixture model for Timoshenko nano-beams", Compos. Part B: Eng., 164 590-598. https://doi.org/10.1016/j.compositesb.2019.01.012.   DOI
58 Barretta, R., Diaco, M., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2018), "Stress-driven integral elastic theory for torsion of nano-beams", Mech. Res. Commun., 87 35-41. https://doi.org/10.1016/j.mechrescom.2017.11.004.   DOI
59 Barretta, R., Fabbrocino, F., Luciano, R. and Sciarra, F.M.D. (2018), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams", Physica E: Low-dimensional Syst. Nanostruct., 97 13-30. https://doi.org/10.1016/j.physe.2017.09.026.   DOI
60 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
61 Pirmohammadi, A.A., Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2014), "Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory", Appl. Phys. A. 117(3), 1547-1555. https://doi.org/10.1007/s00339-014-8592-z.   DOI
62 Hosseini, S. and Rahmani, O. (2017), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica. 52(6), 1441-1457. https://doi.org/10.1007/s11012-016-0491-2.   DOI
63 Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2015), "Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories", Meccanica, 50(5), 1351-1369. https://doi.org/10.1007/s11012-014-0096-6.   DOI
64 Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118.   DOI