Browse > Article
http://dx.doi.org/10.12989/anr.2018.6.3.219

Bending of a cracked functionally graded nanobeam  

Akbas, Seref Doguscan (Department of Civil Engineering, Bursa Technical University)
Publication Information
Advances in nano research / v.6, no.3, 2018 , pp. 219-242 More about this Journal
Abstract
In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.
Keywords
open edge crack; modified couple stress theory; functionally graded materials; nanobea;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin. Solid Films, 519(8), 2477-2482.   DOI
2 Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R. and Sotoude Hag Highi, M.H. (2014), "Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects", Compos. Part B: Eng., 61, 66-72.   DOI
3 Hsu, J.C., Lee, H.L. and Chang, W.J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Current Appl. Phys., 11(6), 1384-1388.   DOI
4 Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.   DOI
5 Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994.   DOI
6 Ke, L.-L., Wang, Y.-S. and Wang, Z.-D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimensional Syst. Nanostruct., 43(7), 1387-1393.   DOI
7 Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431.   DOI
8 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437.   DOI
9 Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater. Res., 694-697, 221-224.   DOI
10 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508.   DOI
11 Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dyn., 11(3), 495-512. DOI: 10.1142/S0219455411004233   DOI
12 Liu, S.-J., Qi, S.-H. and Zhang, W.-M. (2013), "Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation", Zhendong yu Chongji/Journal of Vibration and Shock, 32(17), 41-45.
13 Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309.   DOI
14 Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185.   DOI
15 Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391.   DOI
16 Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7.   DOI
17 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11(1), 415-448.   DOI
18 Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525.   DOI
19 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359.   DOI
20 Nateghi A. and Salamat-Talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110.   DOI
21 Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76(2), 292-297.   DOI
22 Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International Conference on Micro- and Nanosystems, San Diego, CA, USA.
23 Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399.   DOI
24 Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12(12), 1163-1170.   DOI
25 Salamat-Talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73.   DOI
26 Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825.   DOI
27 Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE, 86(8), 1611-1626.   DOI
28 Simsek, M. and Reddy, J.N. (2013a), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53.   DOI
29 Shaat, M., Akbarzadeh Khorshidi, M., Abdelkefi, A. and Shariati, M. (2016), "Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials", Int. J. Mech. Sci., 115-116, 574-585.   DOI
30 Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732.   DOI
31 Simsek, M. and Reddy, J.N. (2013b), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58.   DOI
32 Simsek, M., Kocatürk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747.   DOI
33 Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30.   DOI
34 Tadi Beni, Y., Jafari, A. and Razavi, H. (2015), "Size Effect on Free Transverse Vibration of Cracked Nanobeams using Couple Stress Theory", Int. J. Eng., 28(2), 296-304.
35 Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277.   DOI
36 Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10.   DOI
37 Torabi, K. and Nafar Dastgerdi, J. (2012), "An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model", Thin. Solid Films, 520(21), 6595-6602.   DOI
38 Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11(1), 385-414.   DOI
39 Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26(4), 675-684.   DOI
40 Wang, Y.-G., Lin, W.-H., Zhou, C.-L. and Liu, R.-X. (2014), "Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory", J. Mech., 31(1), 37-46.
41 Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded Ploy-SiGe Layers for MEMS Applications", Mater. Sci. Forum, 492-493, 255-260.
42 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743.   DOI
43 Yu, Z. and Chu, F. (2009), "Identification of crack in functionally graded material beams using the pversion of finite element method", J. Sound Vib., 325(1-2), 69-84.   DOI
44 Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I. and Shabani, R. (2013), "Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes", Appl. Math. Model., 37(10-11), 6964-6978.   DOI
45 Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48(12), 2044-2053.   DOI
46 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710.   DOI
47 Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658.   DOI
48 Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors Actuat., 35(1), 31-59.
49 Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599.   DOI
50 Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763.   DOI
51 Akbas, S.D. (2016b), "Forced Vibration Analysis of Viscoelastic Nanobeams Embedded in an Elastic Medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143.   DOI
52 Akbas, S.D. (2016c), "Static Analysis of a Nano Plate by using Generalized Differantial Quadrature Method", Int. J. Eng. Appl. Sci., 8(2), (Special Issue: Nanomechanics), 30-39.
53 Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100.   DOI
54 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205.   DOI
55 Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. DOI: http://dx.doi.org/10.1142/S021945541750033X   DOI
56 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55.
57 Akgoz, B. and Civalek, O. (2012), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
58 Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104.   DOI
59 Akgoz, B. and Civalek, O. (2015a), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301.   DOI
60 Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20.   DOI
61 Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12.   DOI
62 Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 2011, 221-228.   DOI
63 Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V. and Darabi, M.A. (2013c), "Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams", Int. J. Non-Linear Mech., 50, 127-135.   DOI
64 Ansari, R., Gholami, R. and Darabi, M.A. (2012), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
65 Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013a), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100, 385-397.   DOI
66 Ansari, R., Gholami, R. and Sahmani, S. (2013b), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83(10), 1439-1449.   DOI
67 Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013d), "Buckling of FGM Timoshenko microbeams under in-plane thermal loading based on the modified strain gradient theory", Int. J. Multiscale Computat. Eng., 11(4), 389-405.   DOI
68 Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Rouhi, H. (2014a), "Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity", J. Mech., 30(2), 161-172.   DOI
69 Ansari, R., Gholami, R. and Sahmani, S. (2014b), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient Reddy beam theory", Int. J. Computat. Methods Eng. Sci. Mech., 15(5), 401-412.   DOI
70 Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062.   DOI
71 Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112.   DOI
72 Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-3249.   DOI
73 Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365.   DOI
74 Broek, D. (1986), Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, Netherlands.
75 Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332, 331-338.   DOI
76 Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39.   DOI
77 Ebrahimi, F. and Barati, M.R. (2016a), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84.   DOI
78 Ebrahimi, F. and Barati, M.R. (2016b), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
79 Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
80 Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
81 Erdogan, F. and Wu, B.H. (1997), "The Surface Crack Problem for a Plate with Functionally Graded Properties", J. Appl. Mech., 64(3), 448-456.
82 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16.   DOI
83 Fang, T.-H. and Chang, W.-J. (2003), "Sensitivity analysis of scanning near-field optical microscope probe", Optics Laser Technol., 35(4), 267-271.   DOI
84 Fang, T.-H., Chang, W.-J. and Liao, S.-C. (2003), "Simulated nanojet ejection process by spreading droplets on a solid surface", J. Phys.: Condensed Matter, 15(49), 8263-8271.   DOI
85 Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857.   DOI
86 Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999.   DOI
87 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.   DOI
88 Gurses, M., Akgoz, B. and Civalek, O. (2012), "Annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Computat., 219(6), 3226-3240.   DOI
89 Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021.   DOI