• 제목/요약/키워드: Euler-Bernoulli Theory

검색결과 299건 처리시간 0.023초

불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석 (Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces)

  • 김병삼;이성철
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중 (Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports)

  • 김석기;박광규;이병구
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.85-92
    • /
    • 2006
  • 이 논문은 일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중에 관한 연구이다. 기둥의 변단면을 중실 직사각형 단면을 갖는 선형 변단면으로 채택하고, Bernoulli-Euler보 이론을 이용하여 경사종동력이 작용하는 소위 Beck 기둥의 자유진동을 지배하는 상미분방정식과 경계조건을 유도하였다. 이 미분방정식을 수치해석하여 하중-고유진동수 곡선을 얻고 이로부터 발산임계하중 및 동요임계하중을 산출하였다. 수치해석의 결과로부터 변단면 형태, 경사변수 및 스프링 강성이 임계하중에 미치는 영향을 고찰하였다

Stability of a slender beam-column with locally varying Young's modulus

  • Kutis, Vladimir;Murin, Justin
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.15-27
    • /
    • 2006
  • A locally varying temperature field or a mixture of two or more different materials can cause local variation of elasticity properties of a beam. In this paper, a new Euler-Bernoulli beam element with varying Young's modulus along its longitudinal axis is presented. The influence of axial forces according to the linearized 2nd order beam theory is considered, as well. The stiffness matrix of this element contains the transfer constants which depend on Young's modulus variation and on axial forces. Occurrence of the polynomial variation of Young's modulus has been assumed. Such approach can be also used for smooth local variation of Young's modulus. The critical loads of the straight slender columns were studied using the new beam element. The influence of position of the local Young's modulus variation and its type (such as linear, quadratic, etc.) on the critical load value and rate of convergence was investigated. The obtained results based on the new beam element were compared with ANSYS solutions, where the number of elements gradually increased. Our results show significant influence of the locally varying Young's modulus on the critical load value and the convergence rate.

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories

  • Rahmani, Omid;Asemani, S. Samane
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.175-187
    • /
    • 2020
  • The theories having been developed thus far account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler-Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The equations of motion and boundary conditions were derived from Hamilton's principle. The resultant system of ordinary differential equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing nanobeam-based devices and systems.

Exact natural frequencies of structures consisting of two-part beam-mass systems

  • Su, H.;Banerjee, J.R.
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.551-566
    • /
    • 2005
  • Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first approach is based on matrix transformation while the second one is a direct approach in which the kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a structural member consisting of two different beam segments between which there is a rigid mass element that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results are discussed and the paper concludes with some remarks.

Slender piezoelectric beams with resistive-inductive electrodes - modeling and axial wave propagation

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.335-354
    • /
    • 2016
  • This contribution presents an extended one-dimensional theory for piezoelectric beam-type structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not satisfied. The main motivation of our research is originated from passive vibration control: when an elastic structure is covered by several piezoelectric patches that are linked via resistances and inductances, vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and inductive elements, one obtains the Telegrapher's equation for the voltage across the piezoelectric transducer. Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for passive vibration control that might be of great interest for practical applications in the future.

L1-B8형 초음파 모터의 구동 특성 (Driving Characteristics of L1-B8 Mode Ultrasonic Motor)

  • 김행식;박태곤;김명호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.356-359
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. This ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory In the experimental device, piezoelectric ceramics ( a piece of ceramic for the L-mode, $24\;{\times}\;8\;{\times}\;1[mm]$, and four pieces for the B-mode, $12.5\;{\times}\;8\;{\times}\;1[mm]$) were attached to one side of a aluminum plate($100\;{\times}\;8\;{\times}\;1[mm]$), and the stator was supported with a plastic case. As results, no-load rpm was 50[rev./m] when applied voltage was 150[Vrms] at the resonance frequency, and as the voltage was increased, the rpm was increased.

  • PDF

유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용 (Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성 (Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제18권1호
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.