• Title/Summary/Keyword: Euler Equation

Search Result 447, Processing Time 0.026 seconds

CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE ROSENAU-BURGERS EQUATION

  • Xu, Ge-Xing;Li, Chun-Hua;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Numerical solutions of the Rosenau-Burgers equation based on the cubic B-spline finite element method are introduced. The backward Euler method is used for discretization in time, and the obtained nonlinear algebraic system is changed to a linear system by the Newton's method. We show that those methods are unconditionally stable. Two test problems are studied to demonstrate the accuracy of the proposed method. The computational results indicate that numerical solutions are in good agreement with exact solutions.

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

Transverse Vibration of a Uniform Euler-Bernoulli Beam Under Varying Axial Force Using Differential Transformation Method

  • Shin Young-Jae;Yun Jong-Hak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the application of techniques of differential transformation method (DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force is derived and verified. The varying axial force was extended to the more general case which was high polynomial consisted of many terms. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The accuracy and the convergence in solving the problem by DTM are discussed.

Vibration Analysis for the Euler-Bernoulli Wedge Beam by Using Differential Transformation Method (미분변환법에 의한 Euler-Bernoulli 쐐기 보의 진동 해석)

  • Yun, Jong-Hak;Shin, Young-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1318-1323
    • /
    • 2005
  • In this paper, the vibration analysis for the Euler-Bernoulli complete and truncate wedge beams by differential Transformation method(DTM) was investigated. The governing differential equation of the Euler-Bernoulli complete and truncate wedge beams with regular singularity is derived and verified. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The usefulness and the application of DTM are discussed.

Vibration Analysis for the Euler-Bernoulli Wedge Beam by using Differential Transformation Method (미분변환법에 의한 Euler-Bernoulli 쐐기 보의 진동 해석)

  • Shin, Young-Jae;Yun, Jong-Hak;Ferdinand, T.;Willmo, I.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.507-512
    • /
    • 2005
  • This paper investigated the vibration analysis fer the Euler-Bernoulli complete and truncate wedge beams by Differential Transformation Method(DTM). The governing differential equation of the Euler-Bernoulli complete and truncate wedge beams with regular singularity is derived and verified. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The usefulness and the application of DTM are discussed.

  • PDF

HOPF BIFURCATION IN NUMERICAL APPROXIMATION OF THE SUNFLOWER EQUATION

  • Zhang Chunrui;Zheng Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.113-124
    • /
    • 2006
  • In this paper we consider the numerical solution of the sunflower equation. We prove that if the sunflower equation has a Hopf bifurcation point at a = ao, then the numerical solution with the Euler-method of the equation has a Hopf bifurcation point at ah = ao + O(h).

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

Implementation of Topological Operators for the Effective Non-manifold CAD System (효율적인 복합다양체 CAD 시스템 위상 작업자 구현)

  • 최국헌
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.382-387
    • /
    • 2004
  • As the increasing needs in the industrial filed, many studies for the 3D CAD system are carried out. There are two types of 3D CAD system. One is manifold modeler, the other is non-manifold modeler. In the manifold modeler only 3D objects can be modeled. In the non-manifold modeler 3D, 2D, 1D, and 0D objects can be modeled in a unified data structure. Recently there are many studies on the non-manifold modeler. Most of them are focused on finding unknown topological entities and representing all kinds of topological entities found. In this paper, efficient data structure is selected. The boundary information on a face and an edge is included in this data structure. The boundary information on a vertex is excluded considering the frequency of usage. Because the disk cycle information is not required in most case of modeling. It is compact. It stores essential non-manifold information such as loop cycle and radial cycle. A suitable Euler-Poincare equation is studied and selected. Using the efficient data structure and the selected Euler-Poincare equation, 18 basic Euler operators are implemented. Several 3D models are created using the implemented modeler. A non-manifold modeling can be carried out using the implemented 3D CAD system. The results of this paper could be used in the further studies such as an implementation of Boolean operators, and a translation of 2D CAD drawings to 3D models.

  • PDF