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Transverse Vibration of a Uniform Euler-Bernoulli Beam Under
Varying Axial Force Using Difterential Transformation Method

Young-Jae Shin*, Jong-Hak Yun
School of Mechanical Engineering, Andong National University,
388 Songchun-dong, Andong, Kyungpuk 760-749, Korea

This paper presents the application of techniques of differential transformation method

(DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying

axial force. The governing differential equation of the transverse vibration of a uniform Euler-

Bernoulli beam under varying axial force is derived and verified. The varying axial force was

extended to the more general case which was high polynomial consisted of many terms. The

concepts of DTM were briefly introduced. Numerical calculations are carried out and compared

with previous published results. The accuracy and the convergence in solving the problem by

DTM are discussed.
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1. Introduction

The structural elements of a mechanism are of-
ten subjected to axially distributed force. Among
those structural elements are a tie-bar under a
constant axial force, a vertically oriented uniform
beam in a gravity field subjected to a linearly
distributed axial force, and a beam in a centri-
fugal field subjected to parabolic distribution.
Especially, there are many cases of beams with
arbitrary cross-section subjected to nonlinearly
distributed force.

McCallion and Bokian investigated the trans-
verse vibration of uniform tie-bars (McCallion,
1973 ; Bokaian, 1988 ; 1990). Schafer investigated
the transverse vibration of ‘hanging’ and ‘stand-
ing’ uniform cantilevers taking account of the
self-weight by the Rayleigh-Ritz method (Schafer,
1985). Fauconneau and Laird obtained upper
bound eigen-frequencies of a simply supported
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uniform beam under a linearly varying com-
pressive or tensile axial force also by using the
Rayleigh-Ritz method (Fauconneau and Laird,
1976). Yokoyama studied the vibration of ‘hang-
ing’ Timoshenko beam under gravity by using
the finite element method (Yokayama, 1990).
Naguleswaran obtained the first three dimension-
less natural frequencies of a uniform cantilever
with the clamped-free and the free-clamped bound
ary conditions by using the Frobenius method
(‘hanging’ and ‘standing’) (Naguleswaran, 1991).
The general solution consisted of the superposi-
tion of four linearly independent power series
solution functions. Naguleswaran (2004) studied
the transverse vibration and investigated the
dynamic instability of a uniform Euler-Bernoulli
beam under linearly varying axial force for 16
combinations of classical boundary conditions by
the Frobenius method. The axial tension distri-
bution consists of a constant part and a part
proportional to axial co-ordinate. These are two
system parameters. Wholly tensile, partly tensile
and wholly compressive axial force distribution
are considered. Chung and Park investigated
dynamic characteristics of a beam subjected to an
axial force and a force of time dependent fre-
quency (Chung and Park, 1986).
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The transformation technique called Differen-
tial Transformation Method (DTM) is applied to
the analysis of the transverse vibration of a uni-
form Euler-Bernoulli beam under varying axial
force (Zhou, 1986). The varying axial force was
extended to the more general case which was
presented in high polynomial. The concept of this
transformation was applied to solve linear and
nonlinear initial value problems in electric circuit
analysis. Recently this method seems to attract
researcher’s interest in solving eigenvalue prob-
lems (Malik and Dang, 1998 ; Kuang and Ho,
1996). In this study, the concepts of DTM were
briefly introduced. DTM was applied to the
analysis of the transverse vibration of a uniform
Euler-Bernoulli beam under varying axial force.
Numerical calculations are carried out and com-
pared with previous published results. These re-
sults can be used as the base data for the dynamic
design of beam. The accuracy and the conver-
gence in solving the problem by DTM are dis-
cussed.

2. Differential Transformation
Method

The concept of this transformation was first
proposed by Zhou (1986). Differential Transfor-
mation Method (DTM) is based on Taylor series
expansion and the solution of differential equa-
tions is obtained through recursive algebraic
equation of the.transformed governing equation
of motion by its basic mathematical operations.
DTM is a very useful method for solving linear
and non-linear differential problems.

Let y{x) be analytic in domain D and x=ux
be a point in D. Then there exists precisely one
power series with center at x=x, which re-
presents vy {x); this series, the Taylor series of the
function y(x), is as following form

= (x—x0)* [ d*y(x)

v =5 [
If we define differential transformation of func-
tion Y (&) as follows

| for ¥xcD (1)

Table 1 Basic operations of the differential
transformation

Original function T-function

wix)=y(x) £z (x) Wk =Y (k) £Z(k)
z(x) =y {x) Z(k)=AY (k)
w<x>=d'3x(j‘) WD = (k1) (k+2) (ke m) ¥ (k)

W =XV () Z (k1)

=0

At k<m W (k) ="t ™

At k>m W(k)=0

k
W{k) :—;L,sin<ﬂ7k> at xp=0

and substituting Eq. (2) into Eq. (1) and rear-
ranging, the original function v (x) can be obtain
as

y(0) =3 (x=20)*Y (#) ©)

where Y (k) is called T-function for the original
function y(x), and Eq.(3) is the differential
inverse transformation of Y (&).

From the above definition of the differential
transformation, we can derive the rules of trans-
formational operations: some examples of these,
which are useful in the following analysis, are
presented in Table 1.

Especially, if the original function is w(x) =
x™ when x,=0, it’s T-function is represented as

for xo=0

1, k=m

0, k+m @

W(/e):a(;'e—m):{

For actual applications, y(x) is approximately
represented by Eq. (5) which takes finite terms.

v =2 (x—x) Y (B) (s)

where # is natural number decided by conver-
gence of solution.

3. Governing Equations and
Boundary Conditions

Figure 1 shows the Euler-Bernoulli beam un-
der varying axial force. In the Fig. 1, EI, m and
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T(x):Axial force distribution

Fig. 1 The beam coordinate system and axial force
distribution

L represent the flexural rigidity, mass per unit
length and length of the uniform beam respec-
tively. The end (x=0) is axially restrained while
the opposite end is axially free. The varying axial
force distribution 7T (x) at abscissa x along the
axis of the beam is

__ — yi x n

T(@) =T+ Zan(F) (6)

n=1 L

where T (0) is the axial force at x=0. And, @ is
the coefficient of axial force distribution function,
and p is integer.

Positive axial force and negative axial force are
tensile and compressive respectively.

If at abscissa x, ¥(x), o, M(x) and Q(x) are
transverse deflection of the beam, the free vibra-
tion frequency, the amplitudes of bending mo-
ment and shearing force respectively. The equi-
librium conditions of a differential element are
represented as following

d*y (x)

M(x) :Ef—z,xz— (7)
Qo)+ ME gyl o (g
1%—-1— maty (x) =0 (9)

Substituting Eq. (7) into Eq. (8), substituting Eq.
(8) into Eq.(9) and rearranging, the governing
equation of the FEuler-Bernoulli beam under
varying axial force can be obtain as following

d*y(x) dT(x) dv(x)
dx? dx dx

— T(x)%x(zﬂ— may (x) =0

EI
(10)

We introduce the dimensionless variables X and
y(X), the dimensionless varying axial force dis-
tribution 7 (X), the frequency parameter 4 and
the variable axial parameters y, as follows

T(0)L?

where o=""f7 ~ (the constant axial force
a.L?
EIl -

Substituting Eq. (11) into Eq. (10), the follow-
ing governing equation can be obtained

parameter at x=0) and y,=

d'y(X) dy(X)
> GRS ' )
dy(X) _

—T(X) =57 R'y(X)=0

ax?

In order to solve the Eq.(12), four boundary
conditions are needed. These can be obtained by
specifying two boundary conditions at one end
X =0 and two boundary conditions at the other
end X =1. The boundary conditions considered
here are as follows:

Clamped end (Cl):
dy(X)

y{X)=0 and —d—X—zo (13)

Pinned end (Pn):
y(X)=0 and M(X)=0 (14)

Sliding end (Sl):
dy(X)
dX

and Q(X)=0 (15)

Free end (Fr):
M(X) and Q(X)=0 (16)

4. Application of Differential
Transformation

Taking differential transformation of Eq. (12)
and using Table | mentioned above, we can
obtain
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(B+2) (B+3) (k+4) Y (k+4)
D (E=1+D) Y (—1+1)

(F+1

f
DM
~N

o~
1)
-

(17)
D=1+ (k—=1+2) Y (k—1+2)

(k) =0

|
M
=~

~
il
-

!
=
=l

where ¥, T, and T are T-functions of y(X), T
(X) and T(X) respectively.

In order to analyze the Euler-Bernoulli beam
under varying axial force, the boundary condi-
tions; from Eq.(13) to Eq.(16); should be
transformed. The transformed boundary condi-
tion equations at each end should be obtained by
differential transformation method as follows

At the end X=0
Clamped end (Cl):
Y (0)=0 and Y (1) =0 (18)

Pinned end (Pn):
Y(0)=0and Y(2) =0 (19)

Sliding end (SI):
Y(1)=0

and —3IX PO +TOxT1)=0 29
Free end (Fr):
Y()=0 (21)
and —=3!XY(3)+T©0)xY(1)=0
At the end X =1
Clamped end (Cl):
> Y (k) =0
i=0 ) (22)
and Zzl kY (k)=0
Pinned end (Pn):
3 P (k) =0
=0 ) (23)
and kgok(k—l) Y (k)=0

Sliding end (SI):
;20 RV (k) =0
and é}ok(k—l) (k=3 V() +T() (24)

X

M=

kY (B)=0

k=0

Free end (Fr):
g:o E(E—1) T (k) =0
and é}ok(k—l) (=3 V(R +T()  (25)

xéﬂk?(k) =0

5. Numerical Analysis and
Discussions

In order to analyze the Euler-Bernoulli beam
under varying axial force, we should take ad-
vantage of the transformed Eq. (17) and the four
corresponding boundary condition Egs. (18) ~
(25). These equations can be represented in fol-
lowing matrix form

a1 iz o ALk QLe+l 7(0)

a 22t Anr G Y

:z,1 .2,2 ] ?,k Z.k+1 ( ) =0(26)
Ar+1,1 Ar+1,2 " Qhvl,k Ar+1,k+1 Y(k)

A non-trivial solution exists when the deter-
minant of the coefficient matrix vanishes. This
condition leads to the following frequency equa-
tion :

@, a2 o Qe
az1 G2 A2k

a1,k+1

a2,k+1

det =0 (27)

Ar+1,1 Ar+1,2 °°° Ar+lL,k Qr+1,k+1

where a,; are functions of the variables 58, % and
143

From the above equation, the natural frequency
parameter equation and the buckling parameter
equation of the Euler-Bernoulli beam under
varying axial force can be obtained.

Numerical analysis of the FEuler-Bernoulli
beam under varying axial force is berformed for
sixteen boundary conditions, which were chosen
from the Eqs. (13) ~(16), and m=2 (T(X)=
%+ 7). The natural frequencies are obtained in
five significant figures and compared to those of
the reference (Naguleswaran, 2004) .

In the Table 2 the natural frequencies re-
presented by the first three frequency parameters
(B) are given for the case =10.0 and 7; stated
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Table 2 Comparison of the first three frequency parameters for %=10.0 and various 7
BC 71=100.0 71=4.0 7n=-—3.0
B ) Bs 15 ba Bs B B Ba

Frobenius | 5.8768 | 8.9720 | 11.9595 | 5.0437 | 8.1234 | 11.2122 | 4.9587 | 8.0475 | 11.1503
c/a DTM 5.8768 | 8.972 | 11.9595 | 5.0437 | 8.1234 | 11.2122 | 4.9587 | 8.0475 | 11.1503
Frobenius | 5.5709 | 8.5122 | 11.3923 | 4.4144 | 7.4147 | 10.4694 | 4.2694 | 7.3077 | 10.3898
CI/Pn DTM 5.5709 | 8.5122 | 11.3932 | 4.4144 | 7.4147 | 10.4694 | 4.2647 | 7.3077 | 10.3898
Frobenius | 3.5912 | 7.0372 | 9.9341 | 2.8569 | 5.9054 | 8.9358 | 2.7525 | 5.7828 | 8.8455
cust DTM 3.5912 | 7.0372 | 9.9341 | 2.8569 | 5.9054 | 8.9358 | 2.7525 | 5.7828 | 8.8455
Frobenius | 3.5876 | 6.9736 | 9.7435 | 2.7660 | 5.4542 | 8.3161 | 2.5956 | 52063 | 8.1548
CI/Fr DTM 3.5876 | 6.9736 | 9.7435 | 27660 | 5.4542 | 8.3161 | 2.5956 | 5.2063 | 8.1548
Frobenius | 5.2505 | 8.2814 | 11.2405 | 4.3835 | 7.4000 | 10.4614 | 4.2906 | 7.3192 | 10.3960
Pn/C1 DTM 5.2505 | 8.2814 | 11.2405 | 4.3835 | 7.4000 | 10.4614 | 4.2906 | 7.3192 | 10.396
Frobenius | 5.0032 | 7.8617 | 10.6990 | 3.8322 | 6.7141 | 9.7281 | 3.6689 | 6.5970 | 9.6426
Po/Pn DTM 5.0032 | 7.8617 | 10.6990 | 3.8322 | 6.7141 | 9.7281 | 3.6689 | 6.5970 | 9.6426
Frobenius | 3.0737 | 6.4101 | 9.2566 | 2.4084 | 5.2461 | 8.2099 | 23111 | 5.1127 | 8.1122
Po/SI DTM 3.0737 | 64101 | 9.2566 | 2.4084 | 52461 | 8.2099 | 2.3111 | 5.1127 | 8.1122
Frobenius | 3.0722 | 6.3678 | 9.1013 | 2.3588 | 4.8738 | 7.6238 | 2.2170 | 4.6126 | 7.4454
P/ DTM 3.0722 | 6.3678 | 9.1013 | 2.3588 | 4.8738 | 7.6238 | 2217 | 4.6126 | 7.4454
Frobenius | 3.8567 | 6.837 | 9.7732 | 2.8713 | 58892 | 8.9265 | 2.7415 | 57959 | 8.8526
si/cl DTM 3.8567 | 6.837 | 9.7732 | 2.8713 | 5.8892 | 8.9265 | 2.7415 | 5.7959 | 8.8526
Frobenius | 3.7150 | 6.5037 | 9.2877 | 2.4770 | 5.2530 | 8.2117 | 2.2478 | 5.1071 | 8.1108
Si/Pn DTM 3.7150 | 6.5037 | 9.2877 | 2.4770 | 5253 | 82117 | 2.2478 | 5.1071 | 8.1108
Frobenius | 5.0483 | 7.8632 | 10.6986 | 3.8325 | 6.7141 | 9.7281 [ 3.6691 | 6.5970 | 9.6426
Si/s DTM 5.0483 | 7.8632 | 10.6986 | 3.8325 | 6.7141 | 9.7281 | 3.6691 | 6.5970 | 9.6426
Frobenius | 5.0346 | 7.7720 | 104718 | 3.6296 | 6.2133 | 9.0873 | 3.3514 | 5.9897 | 8.9404
S/ DTM 5.0346 | 7.7720 | 10.4718 | 3.6296 | 6.2133 | 9.0873 | 3.3514 | 5.9897 | 8.9404
Frobenius | 3.7806 | 6.3957 | 9.1596 | 2.7547 | 53778 | 8.2704 | 2.6142 | 52739 | 8.1912
Fr/cl DTM 3.7806 | 6.3957 | 9.1596 | 2.7547 | 53778 | 8.2704 | 2.6142 | 5.2739 | 8.1912
Frobenius | 3.6551 | 6.1204 | 8.7159 | 24090 | 4.8209 | 7.5858 | 2.1752 | 4.6632 | 7.4765
Fr/Pn DTM 3.6551 | 6.1204 | 8.7159 | 2.409 | 4.8209 | 7.5858 | 2.1752 | 4.6632 | 7.4765
Fe/sl Frobenius | 4.8344 | 7.3614 | 10.0767 | 3.5792 | 6.1613 | 9.0567 | 3.4052 | 6.0345 | 8.9647
DTM 4.8344 | 7.3614 | 10.0767 | 3.5792 | 6.1613 | 9.0567 | 3.4052 | 6.0345 | 8.9647
Ft/Fr Frobenius | 4.8247 | 7.2942 | 9.8855 | 3.4222 | 57311 | 8.4498 | 3.1479 | 54969 | 8.2900
DTM 4.8247 | 7.2942 | 9.8855 | 3.4222 | 57311 | 8.4498 | 3.1479 | 54969 | 8.2900

in first row. And, Cl, Pn, Sl and Fr designated as
Clamped, Pinned, Sliding and Free boundary
conditions respectively. The results obtained by
using DTM agree with those results obtained by
using Frobenius method (Naguleswaran, 2004) .

6. Conclusions

In this paper, tlie Differential Transformation
Method is applied to the analysis of the transverse
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vibration of a uniform Euler-Bernoulli beam un-
der varying axial force. The varying axial force
was extended to the more general case which was
represented in high polynomial consisted of many
terms. The calculated natural frequency parame-
ters are compared to the reference and the results
are as follows:

(1) The results obtained by DTM agree with
those obtained by Frobenius method (Naguleswaran,
2004),

(2) Differential Transformation Method can
be used as an alternative method to solve the
differential equation problems in addition to Fi-
nite Element Method (FEM), Finite Differential
Method (FDM) and Frobenius method.
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