• Title/Summary/Keyword: Euler Code

Search Result 64, Processing Time 0.021 seconds

Calculations of 3D Euler Flows around an Isolated Engine/Nacelle (비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석)

  • Kim S. M.;Yang S. S.;Lee D. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

NUMERICAL SIMULATION FOR AIRCRAFT STORE SEPARATION VALIDATION (항공기 무장투하 안전성 검증을 위한 전산해석)

  • Yoon, Y.H.;Chung, H.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.157-161
    • /
    • 2007
  • The prediction of the safe separation of the external stores carried on military aircraft is an important task in the aerodynamic design area having the objective to define the operational, release envelopes. The major concern of this study is only safe jettison problem with ejections. This work consists of concept and some results for external store configurations. A Computational Fluid Dynamics technique is applied to calculate the aerodynamic forces. The FLUENT with an implicit Euler solver is used for the present simulations. The computational results are validated against the experimental data.

  • PDF

Investigation on the shock-induced rocket separation from the mother plane (충격파에 의한 비정상 모선분리 현상 연구)

  • Kim Y. S.;Ji Y. M.;Lee J.-W.;Park J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. To solve the Euler equations, named CFD-FASTRAN that is commercial computation code. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

  • PDF

A Dynamic Characteristics of the Tube Flow with the Variations of the Axially-Positioned Super-Circled Orifice Shape (유동방향의 초원형 오리피스 형상 변화가 관유동에 미치는 동특성 연구)

  • Kim, Youn J.;Lee, Sang-Sub
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.52-57
    • /
    • 1997
  • Dynamic characteristics of compressible flow fields in super-circled constricted tube have been studied numerically. By applying MacCormack's explicit scheme, time marching method with predictor/corrector step, Euler equation is solved to find characteristics of fluid flow in a constricted tube where a two-dimensional inviscid compressible flow is assumed. The effects of tube diameter and aspect ratios on the pressure variations are discussed extensively. The results of the developed numerical schemes are compared with those of commercial FLUENT code, and show a good agreement.

  • PDF

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.

Unsteady Compressible Flow past an Airfoil near the Moving Surface (파형 곡면 위를 비행하는 2차원 WIG익형의 비정상 압축성 유동 해석)

  • Im Y. H.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.191-196
    • /
    • 1998
  • A two-dimensional airfoil flying over a wavy wall is calculated by solving the unsteady Euler equation. Unsteady Transonic flow over an NACA00012 airfoil in pitching motion has been computed for code validation. Some numerical results for NACA6409 airfoil under different wave number, wave length, fly height are presented. The numerical results show the variation of lift and pitching moment coefficients are increased as wave length decrease.

  • PDF

Two-Parameter Study on the Jet Regurgitant Mode of Resonant Tube

  • Chang, Se-Myong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.20-26
    • /
    • 2000
  • A conceptual simplified model of Hartmann-Sprenger tube is suggested and investigated to decouple the regurgitant mode in the present paper. In spite of high nonlinearity, the acoustic behavior of this resonant tube system is dependent on wavelength and depth of the tube. The effect of forcing frequency and tube geometry on jet regurgitant mode are studied and discussed. With a conventional axisymmetric Euler code, sensitive acoustic problems are solved and validated by comparison with analytic theories.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

Computational analysis of coupled fluid-structure for a rotor blade in hover (정지 비행하는 로터 블레이드의 전산 유체-구조 결합 해석)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1139-1145
    • /
    • 2008
  • numerical study on the coupled fluid-structure for a rotor blade in hover was conducted. Computational fluid dynamics code with enhanced wake-capturing capability is coupled with a simple structural dynamics code based on Euler-Bernoulli's beam equation. The numerical results show a reasonable blade structural deformation and aerodynamic characteristics.