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AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE
CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

O Hyoung-Jin Kim", Shigeru Obayashi?, and Kazuhiro Nakahashi®

An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an
adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-
sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted for the surface
geometry perturbation, and the elliptic equation method is employed for the interior grid modification during the
design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle
translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the
lift and airfoil thickness. Successful design resuits confirm validity and efficiency of the present design method.

Introduction

With the advances in computational fluid dy-
namics (CFD) and computing power of modern com-
puters, acrodynamic design optimization methods
utilizing CFD codes are more important than ever.
Among several design optimization methods applica-
ble to aerodynamic design problems, the gradient-
based method has been used most widely due to its
well-developed numerical algorithms and relatively
small computational burden. In the application of
gradient-based methods to practical aerodynamic des-
ign problems, one of the major concerns i$ an accurate
and efficient calculation of sensitivity derivatives of an
aerodynamic objective function.

Sensitivity derivatives can be evaluated more ro-
bustly and efficiently by using a sensitivity analysis
code based either on a direct method{1] or on an ad-
joint method[2-5]. An adjoint method is preferable in
aerodynamic designs because it is more economical
when the number of design variables is larger than the
total number of an objective function and constraints.
Reuther et al.[3], for example, designed aircraft con-
figurations using a continuous adjoint method with the
Euler equations in a structured multi-block grid system.
Kim et al.[4] developed direct and adjoint sensitivity
codes from 2-D Navier-Stokes code with an algebraic
turbulence model in a structured grid system.

In this study, direct and adjoint sensitivity codes
have been developed from a 3-D unstructured Euler
solver based on a cell-vertex finite volume method.
With the resulting adjoint code, aecrodynamic design of
a Supersonic Transport (SST) wing with nacelle is
conducted. Wing geometry is perturbed in an algebraic
manner at five design sections. Interior grids are
moved accordingly by the elliptic equation method.
Grid sensitivities of interior nodes are neglected except
those for design variables associated with nacelle
translation in order to reduce required computational
time for the mesh sensitivity calculation.
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Flow Analysis

The Euler equations for compressible inviscid
flows are written in an integrai form as follows;
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where Q=({p, pu, pv, pw,e]’ is the vector of conser-
vative variables; o the density; #,V,w the velocity
components in the Xx,y,Zz directions; and € the total

energy. The vector F(Q) represents the inviscid flux
vector and N is the outward normal of &Q which is
the boundary of the control volume Q. This system of
equations is closed by the perfect gas equation of state
with a constant ratio of specific heats.

The equations are solved by a finite volume cell-
vertex scheme. The control volume is a non-
overlapping dual cell. For a control volume, Eq.(1) can
be written in an algebraic form as follows; .
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where AS; is a segment area of the control volume
boundary associated with edge connecting points i and
J. This segment area AS); as well as its unit normal B;

can be computed by summing up the contribution from
each tetrahedron sharing the edge. The term h is an
inviscid numerical flux vector normal to the control

volume boundary, and Q) are flow variables on both

sides of the control volume boundary. The subscript of
summation, ji(i), means all node points connected to
node i.

The numerical flux h is computed using
an approximate Riemann solver of Harten-Lax-
van Leer-Einfeldt-Wada(HLLEW)[5]. The second
order spatial accuracy is realized by a linear recon-
struction of the primitive gas dynamic variables
q={p,u,v,w, p]" inside the control volume using the

following equation;
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where T is a vector pointing to point (X, y,2) ,and

I is the node index. The gradients associated with the
contro! volume centroids are volume-averaged gradi-
ents computed by the surrounding grid cells. Venkatak-

rishnan’s limiter [6] is used for the function Y/, in

Eq.(3) because of its superior convergence properties.

In order to integrate Eq. (2) in time, the Lower-
Upper Symmetric Gauss-Seidel(LU-SGS) implicit
method (7] is adopted.

Sensitivity Analysis
Direct Method
An aerodynamic sensitivity analysis begins with
the fact that the discrete residual vector of the non-
linear flow equations is null for a converged flow field
solution of steady problems, which can be written
symbolically as
Rlo.x.f] = o0, @
where X is the grid position vector, B the vector of
design variables. Equation (4) can be directly differen-
tiated via the chain rule with respect to f to yield the
following equation.
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This equation is the direct sensitivity equation
for the flow variable sensitivity {dQ/df}. The vector
{C;} has no relation with the {dQ/df}, and thus, is
constant throuthout the solution process of the
sensitivity equation for a design variable 8. {dX/df} in
the {C,} is a vector of grid sensitivity, which can be
calculated by a finite-difference approximation or the
direct differentiation of a routine for the grid
generation or modification.

In order to find the solution {dQ/dg} of Eq.(5)
iteratively, a pseudo time term is added as follows to
obtain the incremental form;

2, _[ar,[do|™ . ©
ar [aQHdﬂ} +a)

where Q rtpresents the solution vector {dQ/df}. The
above system of equations is solved with the LU-SGS
scheme that is used for the flow solver.

When the flow variable sensitivity vector
(dQ/dfs} is obtained, the total derivative of the
objective function F can be calculated. The objective
function F is usually aerodynamic coefficients such as
Cp, C., Cy, or differences of surface pressures with
specified target pressures. F is a function of flow
variables Q, grid position X, and design variables B,
i.e,
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The sensitivity derivative of the cost fuaction F with
respect to a design variable B is given by
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Adjoint Method

Since the total derivative of the flow equa-
tions in the steady state is null as can be seen in Eq.(5),

we can introduce adjoint variables and combine Egs.
(5) and (8) to obtain
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Coefficients of the flow variable sensitivity vector
{dQ/dp} form the following adjoint equation.

3w

If one finds the adjoint variable vector {A} which
satisfies the above adjoint equation, one can obtain the
sensitivity derivative of F with respect to B without
any information about the flow wvariable sensitivity
vector {dQ/df}. This makes the computational cost for
the sensitivity analysis independent of the number of
design variables. Equation (9) eventually becomes to

the following form,
T
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Figure 1 compares a two-dimensional
example of flux accumulation for the flow solver and
the adjoint method. In the flow solver, primitive flow
variables are reconstructed at the control volume
surface using surrounding node point valies. Then the
flux h through the control volume surface is calculated
and accumulated at both nodes 1 and 2. This is
repeated for all edges to obtain flux residual for the
control volume. On the other hand, in the adjoint

method, the adjoint flux [ OR; JT {1} is accumulated at
29

all the node points that have effects on the
reconstructed flow variables at the control volume
surface. For example, if we set the flux for the edge
connecting node 1 and mnode 2 as R,
( =-AS,,h,, ), accumulation of the adjoint
residual R_adj is made at nodes related with node 1 as
follows.

10)

T
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For nodes surrounding node 2,

7
This causes small loops for the neighboring nodes to
be inserted into the big loop for all edges. The length
of the small loop was usually from 5 to 25 around a
node point for a three dimensional Euler grid
depending on the grid structure. If the adjoint code is
run on a vector machine, it would hamper the flux
calculation routine of the adjoint code to be vectorized
with the big loop of edges.

T
R_adj, 7= R_adj,- [%&2_} A,§=1,2.3789.10.

Fig.1 A 2-D example of flux accumulation for the flow
solver and the adjoint method

In this study, the required differentiation proc-
ess is conducted by human hand. Hand differentiation
of a modern CFD code is somewhat a tedious job to do.
However, if once done carefully, it provides an effi-
cient sensitivity analysis tool.[4]

Sensitivity Code Validation

In order to validate the direct and adjoint sen-
sitivity codes developed in this study, sensitivity ana-
lyses are conducted for a typical Supersonic Transport
(SST) immersed in a supersonic flow. Flow conditions
are M_ = 2.0 and o = 2.0 degree. All the computations
for the code validation were conducted with a single
processor of a NEC SX-4 vector computer.

We used the following design parameter B for
the purpose of test.

B: Yo=Y~ AB™X, 13)
where x and y are coordinates of longitudinal and
normal direction, respectively. The sensitivity deriva-
tives are compared with those computed by the for-
ward finite-difference approximation with a step size
AP of 107, The residual of the flow solver is reduced to
nearly machine zero for the finite difference calcula-
tion. Table 1 compares the sensitivity derivatives by
the adjoint, direct, and finite-difference method. They
compare very well with one another with errors less

than 0.004 %.

Table 2 compares required memory and com-
putational time for the Euler solver and its sensitivity
codes. The required memory for both direct and ad-
joint codes seems to be reasonable. The adjoint code
costs somewhat large computational time per iteration
due to the poor vectorization performance of the ad-
joint residual accumulation routine as mentioned in the
previous section. We also tested the ratio of computa-
tional time of the flow solver over the adjoint code at a
Compaq & workstation, a scalar machine, and found
that the adjoint code costs only 1.5 times the CPU time
of the flow solver per iteration.

Table 1 Comparison of sensitivity derivatives: errors
are with respect to the values of FD

Finite Direct code | Adjoint code
Difference (%error) (%eerror)
dC/dp 1.308065 1.308050 1.308056
(0.00115) (0.00069
dCy/dp | 0.0983594 | 0.0983587 | 0.0983557
(0.000712) (0.00376

Table 2 Comparison of memory and CPU time; num-
bers in the parentheses are relative ratios to the flow
solver

Flow Direct Adjoint
Solver code code
Required 160 222 360 (2.25)
Memory (MB) (1.39)
Time per Itera- 3.75 | 5.7(1.52) | 26.5(7.07)
tion (sec.)
Design Methodology
Design Objective

The present design method using the unstructured
Euler solver and the adjoint method is applied to an
experimental SST wing with a flow-through type en-
gine nacelle attached on its lower surface, which is
under development by National Aerospace Laboratory
of Japan as a basic study for the next generation super-
sonic transport.[8]
The objective of the present design study is de-
fined as follows.
Minimize C, (14)
Subjectto C, =C,°

where Cj, and C, are drag and lift coefficients, respec-
tively, and C, " is specified. If the lift constraint is dealt
as an explicit constraint in an optimizer, it requires an
additional adjoint code computation for the C, deriva-
tives. In this study, therefore, the lift constraint is satis-
fied running the flow solver in a fixed-lift mode, in
which the incidence angle o is adjusted based on C,,,.
Since we would like to minimize drag when C, =C,",
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i.e. at an adjusted incidence angle, the objective func-
tion F = Cj, should be modified as follows to consider
the lift constraint consistently,

()

where C, and C, are drag and lift coefficients
respectively without any incidence angle modification,

and C," is the target lift coefficeint, which is 0.100 for
this case.

N (15)
)

F=C, - €. -c

Design Parameters and Grid Modification Method
The wing section geometry is modified adding a linear
combination of Hicks and Henne shape functions[9],
We used five design sections along the SST wing span
and defined 20 Hicks-Henne design variables and one
twist angle per a design section. In addition to the 105
design variables, the height of diverter is also consid-
ered as a design parameter. With the new geometry of
the design sections, node points on the wing surface
are linearly interpolated.

When the surface grid is modified, the interior
grid points should be moved accordingly. In the struc-
tured grid approach, the interior grid positions can be
moved with a relative ease using an algebraic mesh
movement strategy which modifies the grid point
coordinates along a grid line of the same index. In the
unstructured grid method, however, such a simple grid
modification method cannot be applied, and a more
sophisticated grid movement method is needed.

For the movement of the grid points with the
perturbed surface grid, we used the elliptic partial
differential equation method proposed by Crumpton
and Giles[10]. In the method, the displacement &x
from initial grid point x, is prescribed by the following
equation with Dirichlet boundary conditions

V-(kVé&)=0. (16)
Diffusion coefficient k is constant in each cell and is
given by

1
k=—r— an
ma.x(Vol, g)

where Fol is a control volume of each grid point and &
is a small positive number to prevent k from becoming
negative. The elliptic equation (17) is discretized by a
finite volume method, and subsequent linear algebraic
equations are solved by the conjugate gradient
method[11]. Required computational time to obtain
converged solution 8x was same with that of a few
iterations of the Euler solver.

Grid Sensitivity

The elliptic equation method for the interior
grid movement is differentiated to be applied to the
grid sensitivity calculation for the vector {C} in Eq.(5)

[ = 2454

with respect to each geometric design variable. Since
this requires almost the same computational cost with
the grid movement procedure, the total computational
burden would be a substantial amount if the number of
design variables becomes large; say, riore than one
hundred.

One possible way to reduce the computational
burden of the grid sensitivity calculation is to neglect
the grid sensitivity of interior node points. Eyi and
Lee{1] defined grid sensitivities on the body surface
only by ignoring the movement of interior grid points
in their study on direct sensitivity analysis with 2-D
Euler equations. Although they did not present an
explicit accuracy comparison, they reported that the
simplification approach does not affect the accuracy of
the resulting sensitivity.

In this study, we made a comparison between
the derivatives with and without the interior grid sen-
sitivities in order to evaluate the accuracy of the sim-
plification approach ignoring the interior grid move-
ment. Figure 2 compares the derivatives of the objec-
tive function obtained with and without the interior
grid sensitivity information.
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Fig.2 Comparison of sensitivity derivatives with and
without interior grid sensitivity ‘nformation

Derivatives with respect to the design variables have
little difference between the two values except those of
21 ~ 30 in the design variables. The design variables
with indices from 21 to 30 are defined on the lower
surface of the second design section, which is located
at the centerline of the diverter. Thus, they cause the
nacelle to be translated vertically because of the con-
straint on the leading edge height which will be men-
tioned in a following section. It has been shown in
Ref.2 that for geometries with singularity such as sharp
trailing edges, interior mesh sensitivities must be in-
cluded for the calculation of the derivatives associated
with translation. In this case, the nacelle inlet and
outlet have sharp edges, which causes the derivatives
calculated without interior mesh sensitivities to be
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deviated from those values obtained with the mesh
sensitivities. It can be noted here that the interior grid
sensitivities are required for design variables associat-
ed with translation of the nacelle, and, on the other
hand, the grid sensitivities can be ignored for other
ordinary design variables, i.e. coefficients of shape
function or twist angles, without major accuracy deg-
radation.

In this study, interior grid sensitivities for the
ten design variables (21~30) are calculated by the
elliptic equation method, while for other design vari-
ables, only the surface grid sensitivities are defined.
This simplification approach required only a quarter of
the computational time for the approach computing all
the interior grid sensitivities.

Optimization Method

For the minimization of the objective function
with specified constraints, the ADS(Automated Design
Synthesis) program{12] was used as an optimizer. The
Sequential Quadratic Programming (SQP) method([13]
is adopted in which the objective is approximated by a
quadratic Taylor series expansion to create a direction-
finding problem. This subproblem is solved using the
Maoadified Method of Feasible Directions. Lagrangian
multipliers are calculated at the optimum of the sub-
problem. Then one-dimensional search is conducted
using quadratic polynomial interpolation. When the
one design iteration is complete, the approximated
Hessian matrix is updated by the Broydon-Fletcher-
Goldfarb-Shanno formula.

Design Results

Design conditions are a freestream Mach
number of 2.0 and C, of 0.100. Figure 3 shows the
wing-nacelle configuration and surface grids of initial
geometry. The number of nodes and cell for the adopt-
ed volume grid are about 270,000 and 1,500,000,
respectively.

In the present optimization the diverter leading
edge height is also constrained to be larger than the
initial value. This lower side constraint is to prevent
the boundary layer flow from being entrained into the
engine, which might occur if the height of the diverter
leading edge becomes smaller than the initial value.
Additional constraints are imposed so that wing sec-
tion thickness values at front (5%chord), rear
(80%chord) spar position and maximum thickness
position (50 % chord) should be larger than those of
initial geometry.

Fig.3 Surface grids of NAL experimental supersonic
aircraft with nacelles

Fig.4 Comparison of lower surface pressure contours

Table 3 SST wing-nacelle design results

Initial Design A (%)
C 0.10017 0.10020 +0.03
G 0.020513 0.018918 +7.78
L/D 4.883 5.297 +8.48

The density residual of the Euler solver was
reduced by four orders from the initial value, and that
of the adjoint code by two orders. The SQP optimiza-
tion iterations converged with five iterations to obtain
a drag coefficient reduced by 16 counts from 0.0205 to
0.0189 retaining the lift coefficient as the specified
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value and satisfying imposed thickness constraints.
Table 3 summarizes the design results. During the
design process, the Euler solver was run three times
and the adjoint code also three times, which is equiva-
lent to about less than six analyses of the Euler solver
in computational time.

Figure 4 shows the surface pressure contours
on the wing lower surface. It can be noted that the
strength of the impinging shock wave on the wing
lower surface generated by the diverter leading edge is
greatly reduced through the design procedure. Also the
strength of the expansion wave at the trailing edge of
the diverter has been remarkably reduced. Figure 5
compares wing section shapes and pressure distribu-
tions at a design section. The wing section shapes are
elongated by a factor of three in the normal direction.
Section pressure distributions also show that the shock
strength on the lower surface has been remarkably
reduced.

The leading-edge height of the diverter re-
mained the same as the initial value, since the gradient
of the objective function with respect to the height is
positive throughout the design iteration. This is quite
natural in a sense that the volume of the aircraft will be
increased and therefore the pressure drag will be in-
creased if the diverter height increases.

A N o

n=0.232
Fig.5 Section shapes and pressure distributions at a
design section; -—- initial, —design.

Concluding Remarks

An aerodynamic design optimization system is devel-
oped using the unstructured Euler solver and the dis-
crete adjoint method. Surface geometry is perturbed by
simple algebraic shape functions and a twist angle
variation. The interior grid position movement is made
by the elliptic equation method. For an efficient cal-
culation of terms related with the grid sensitivities,
grid sensitivities of interior node points are ignored
except those for the design variables associated with

)
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[ = can

nacelle translation. The present method is successfully
applied to design a SST wing with nacelles. The
impinging shock wave from the diverter on the wing
lower surface has been greatly reduced, and as a con-
sequence, drag is remarkably reduced by three itera-
tions of the SQP optimizer.
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