• 제목/요약/키워드: Euler's totient function

검색결과 8건 처리시간 0.027초

THE FRACTIONAL TOTIENT FUNCTION AND STURMIAN DIRICHLET SERIES

  • Kwon, DoYong
    • 호남수학학술지
    • /
    • 제39권2호
    • /
    • pp.297-305
    • /
    • 2017
  • Let ${\alpha}$ > 0 be a real number and $(s_{\alpha}(n))_{n{\geq}1}$ be the lexicographically greatest Sturmian word of slope ${\alpha}$. We investigate Dirichlet series of the form ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-s}$. To do this, a generalization of Euler's totient function is required. For a real ${\alpha}$ > 0 and a positive integer n, an arithmetic function ${\varphi}{\alpha}(n)$ is defined to be the number of positive integers m for which gcd(m, n) = 1 and 0 < m/n < ${\alpha}$. Under a condition Re(s) > 1, this paper establishes an identity ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-S}=1+{\sum}^{\infty}_{n=1}{\varphi}_{\alpha}(n)({\zeta}(s)-{\zeta}(s,1+n^{-1}))n^{-s}$.

GENERALIZED CULLEN NUMBERS WITH THE LEHMER PROPERTY

  • Kim, Dae-June;Oh, Byeong-Kweon
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1981-1988
    • /
    • 2013
  • We say a positive integer n satisfies the Lehmer property if ${\phi}(n)$ divides n - 1, where ${\phi}(n)$ is the Euler's totient function. Clearly, every prime satisfies the Lehmer property. No composite integer satisfying the Lehmer property is known. In this article, we show that every composite integer of the form $D_{p,n}=np^n+1$, for a prime p and a positive integer n, or of the form ${\alpha}2^{\beta}+1$ for ${\alpha}{\leq}{\beta}$ does not satisfy the Lehmer property.

Multiple Parallel-Pollard's Rho Discrete Logarithm Algorithm

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권8호
    • /
    • pp.29-33
    • /
    • 2015
  • This paper proposes a discrete logarithm algorithm that remarkably reduces the execution time of Pollard's Rho algorithm. Pollard's Rho algorithm computes congruence or collision of ${\alpha}^a{\beta}^b{\equiv}{\alpha}^A{\beta}^B$ (modp) from the initial value a = b = 0, only to derive ${\gamma}$ from $(a+b{\gamma})=(A+B{\gamma})$, ${\gamma}(B-b)=(a-A)$. The basic Pollard's Rho algorithm computes $x_i=(x_{i-1})^2,{\alpha}x_{i-1},{\beta}x_{i-1}$ given ${\alpha}^a{\beta}^b{\equiv}x$(modp), and the general algorithm computes $x_i=(x_{i-1})^2$, $Mx_{i-1}$, $Nx_{i-1}$ for randomly selected $M={\alpha}^m$, $N={\beta}^n$. This paper proposes 4-model Pollard Rho algorithm that seeks ${\beta}_{\gamma}={\alpha}^{\gamma},{\beta}_{\gamma}={\alpha}^{(p-1)/2+{\gamma}}$, and ${\beta}_{{\gamma}^{-1}}={\alpha}^{(p-1)-{\gamma}}$) from $m=n={\lceil}{\sqrt{n}{\rceil}$, (a,b) = (0,0), (1,1). The proposed algorithm has proven to improve the performance of the (0,0)-basic Pollard's Rho algorithm by 71.70%.

The Improved Estimation of the Least Upper Bound to Search for RSA's Private key

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2074-2093
    • /
    • 2022
  • RSA is known as one of the best techniques for securing secret information across an unsecured network. The private key which is one of private parameters is the aim for attackers. However, it is exceedingly impossible to derive this value without disclosing all unknown parameters. In fact, many methods to recover the private key were proposed, the performance of each algorithm is acceptable for the different cases. For example, Wiener's attack is extremely efficient when the private key is very small. On the other hand, Fermat's factoring can quickly break RSA when the difference between two large prime factors of the modulus is relatively small. In general, if all private parameters are not disclosed, attackers will be able to confirm that the private key is unquestionably inside the scope [3, n - 2], where n is the modulus. However, this scope has already been reduced by increasing the greatest lower bound to [dil, n - 2], where dil ≥ 3. The aim of this paper is to decrease the least upper bound to narrow the scope that the private key will remain within this boundary. After finishing the proposed method, the new scope of the private key can be allocated as [dil, dir], where dir ≤ n - 2. In fact, if the private key is extremely close to the new greatest lower bound, it can be retrieved quickly by performing a brute force attack, in which dir is decreased until it is equal to the private key. The experimental results indicate that the proposed method is extremely effective when the difference between prime factors is close to each other and one of two following requirement holds: the first condition is that the multiplier of Euler totient function is very close to the public key's small value whereas the second condition is that the public key should be large whenever the multiplier is far enough.

RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘 (A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권7호
    • /
    • pp.71-76
    • /
    • 2014
  • 대표적인 공개키 암호방식인 RSA에 사용되는 합성수 n=pq의 큰자리 소수 p,q를 소인수분해하여 구하는 것은 사실상 불가능하다. 공개키 e와 합성수 n은 알고 개인키 d를 모를 때, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$을 구하여 $d=e^{-1}(mod{\phi}(n))$의 역함수로 개인키 d를 해독할수 있다. 따라서 ${\phi}(n)$을 알기위해 n으로부터 p,q를 구하는 수학적 난제인 소인수분해법을 적용하고 있다. 소인수분해법에는 n/p=q의 나눗셈 시행법보다는 $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2의 제곱합동법이 일반적으로 적용되고 있다. 그러나 다양한 제곱합동법이 존재함에도 불구하고 아직까지도 많은 RSA 수들이 해독되지 않고 있다. 본 논문은 ${\phi}(n)$을 직접 구하는 알고리즘을 제안하였다. 제안된 알고리즘은 $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$에 대해 $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ 또는 $2^k{\beta}_j=2{\beta}_j$${\phi}(n)$을 구하였다. 제안된 알고리즘은 $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$의 임의의 위치에 존재하는 ${\phi}(n)$도 약 2배 차이의 수행횟수로 찾을 수 있었다.

대칭키 해독을 위한 아기걸음 2k-ary 성인걸음 알고리즘 (Baby-Step 2k-ary Adult-Step Algorithm for Symmetric-Key Decryption)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.23-29
    • /
    • 2015
  • $a^b{\equiv}c$(mod p)에서 a,c,p가 주어졌을 때 b를 구하는 이산대수 문제를 푸는 아기걸음-거인걸음 알고리즘은 p를 $m={\lceil}{\sqrt{p}}{\rceil}$개의 원소를 가진 m개의 블록으로 분할하고 거인 1명이 보폭 m으로 단방향으로만 $a^0$로 걸어가면서 찾는 방법이다. 본 논문은 기본적으로 p를 p/l, $a^l$ > p로 분할하고, 성인 1명이 보폭 l로 단방향으로 걸어가는 방법으로 변형시켰다. 또한, 성인 $2^k$명이 동시에 걸어가면서 b를 빠르게 찾는 방법으로 확장시켰다. 제안된 알고리즘을 $1{\leq}b{\leq}p-1$의 범위에서 $2^k$, (k=2)를 적용한 결과 기본적인 성인걸음수의 1/4로 감소시키는 효과를 얻었다. 결론적으로, 제안된 알고리즘은 아기걸음-거인걸음 알고리즘의 보폭 수를 획기적으로 단축시킬 수 있었다.

최단 보폭-최장 보폭 이산대수 알고리즘의 변형 (Modified Baby-Step Giant-Step Algorithm for Discrete Logarithm)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.87-93
    • /
    • 2013
  • 최단 보폭-최장 보폭 알고리즘은 n을 $m={\lceil}\sqrt{n}{\rceil}$개의 원소를 가진 m개의 블록으로 분할하고 첫 번째 블록의 m개에 대해 $a^x$ (mod n) 값을 저장한다. 다음으로 m개의 블록에 대한 mod n을 계산하여 첫 번째 블록의 원소 값을 검색하여 일치하는 블록을 찾는 방법이다. 본 논문에서는 첫 번째로, $a^{{\phi}(n)/2}{\equiv}1(mod\;n)$$a^x(mod\;n){\equiv}a^{{\phi}(n)+x}$ (mod n)의 특징을 적용하여 m개의 원소를 가진 ${\lceil}m/2{\rceil}$개의 블록으로 분할하는 방법을 적용하여 최장보폭의 수행횟수를 50% 감소시켰다. 두 번째로, ${\lceil}m/2{\rceil}$개의 최단 보폭을 먼저 수행하여 저장하고, 첫 번째 블록의 m개 원소를 수행하는 최단 보폭을 수행하는 방법으로 최단 보폭-최장 보폭 알고리즘을 역으로 수행하는 방법을 제안하였다. 이 알고리즘은 최단 보폭-최장 보폭 알고리즘의 m개 저장과 검색을 ${\lceil}m/2{\rceil}$개로 50% 감소시키는 특징이 있다.

비대칭키 RSA의 𝜙(n) 해독을 위한 역 아기걸음- 2k-ary 성인걸음법 (Reverse Baby-step 2k-ary Adult-step Method for 𝜙((n) Decryption of Asymmetric-key RSA)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.25-31
    • /
    • 2014
  • 비대칭키 RSA의 공개키 e와 합성수 n=pq은 알고 있고 개인키 d를 모를 때, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$을 구하여 $d=e^{-1}(mod{\phi}(n))$으로 개인키 d를 해독한다. 암호해독은 일반적으로 n/p=q 또는 $a^2{\equiv}b^2$(mod n), a=(p+q)/2,b=(q-p)/2를 구하는 소인수 분해법이 널리 적용되고 있다. 그러나 아직까지도 많은 RSA 수들이 해독되지 않고 있다. 본 논문은 ${\phi}(n)$을 직접 구하는 알고리즘을 제안하였다. 제안된 알고리즘은 이산대수의 아기걸음-거인걸음법과 모듈러 지수연산의 $2^k$-ary법을 적용하였다. 이 알고리즘은 역-아기걸음과 $2^k$-ary 성인걸음법을 적용하여 기본적인 성인걸음법 수행횟수를 $1/2^k$로 줄이고, $m={\lfloor}\sqrt{n}{\rfloor}$의 저장 메모리 용량도 l, $a^l$ > n로 감소시켜 ${\phi}(n)$을 l회 이내로 구하였다.