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GENERALIZED CULLEN NUMBERS WITH THE LEHMER

PROPERTY

Dae-June Kim and Byeong-Kweon Oh

Abstract. We say a positive integer n satisfies the Lehmer property if
φ(n) divides n − 1, where φ(n) is the Euler’s totient function. Clearly,
every prime satisfies the Lehmer property. No composite integer satisfy-
ing the Lehmer property is known. In this article, we show that every
composite integer of the form Dp,n = npn+1, for a prime p and a positive

integer n, or of the form α2β + 1 for α ≤ β does not satisfy the Lehmer
property.

1. Introduction

A composite integer n is called a Lehmer number if φ(n) divides n − 1,
where φ(n) is the Euler’s totient function. Hence every Lehmer number is a
Carmichael number and it is a product of distinct odd primes. In 1932 Lehmer
proved in [5] that every Lehmer number is a product of at least 7 distinct odd
primes and asked whether or not a Lehmer number exists. In 1980 Cohen and
Hagis [2] extended Lehmer’s result in such a way that every Lehmer number
is a product of at least 14 distinct odd primes. At present no Lehmer number
is known. Recently it was proved that certain sequences of integers such as
the Fibonacci sequence do not contain a Lehmer number (see, for example, [1],
[6]).

An integer of the form Cn = n2n + 1 for some integer n is called a Cullen

number. Though Hooley proved in [4] that almost all Cullen numbers are
composite in some sense, it is conjectured that there are infinitely many prime
Cullen numbers. Recently, Grau Ribas and Luca proved in [3] that every Cullen
number is not a Lehmer number. Motivated their proof, we prove that there
does not exist a Lehmer number of the form Dp,n := npn + 1, where n is an
arbitrary integer and p is prime. Also we show that an integer of the form
α2β + 1 for α ≤ β is not a Lehmer number, where α is an odd integer.
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2. Generalized Cullen numbers with the Lehmer property

We say an integer n satisfies the Lehmer property if φ(n) divides n − 1.
Clearly every prime satisfies the Lehmer property, and a Lehmer number is
a composite integer satisfying the Lehmer property. An integer of the form
Dp,n := npn + 1 is called a generalized Cullen number, where n and p are
positive integers. In this section we show that every generalized Cullen number
satisfying the Lehmer property is prime, where p is an odd prime. Assume that

φ(Dp,n) divides Dp,n − 1 = npn. Then we have Dp,n =
∏k

i=1 pi, where pi’s are
distinct odd primes. Since k ≥ 14 by [2], the integer n is divisible by 214.

Lemma 2.1. With the above notations, we have

min

(

n1/2

sp,n
, 1 +

2n1/2

3sp,n

)

< k < 1.45 logn,

where sp,n = (3.005 + 2/ log p)(logn)1/2.

Proof. Though the proof of this lemma is quite similar to that of Section 2 of
[3], we provide the proof in detail for reader’s convenience.1

Assume that n = pαn1 (p ∤ n1). Then Dp,n = n1p
n2 + 1 =

∏k
i=1 pi where

n2 = α+n. Let q = pi be a prime factor of Dp,n. Since q−1|Dp,n−1 = n1p
n2 ,

we may write q = mqp
nq + 1, where mq is an even factor of n1.

First, we show the inequality in the right hand side holds. Since
∏

q|Dp,n
mq

divides n and mq ≥ 2, the number of prime factors of Dp,n is at most logn
log 2 .

Therefore we have k ≤ log n
log 2 < 1.45 logn.

Now we prove the inequality in the left hand side. First, suppose that nq > n.
If we write Dp,n = qλ, then we have

λ =
Dp,n

q
≤

npn + 1

pn+1 + 1
< n.

Furthermore, since

Dp,n = qλ = npn + 1 ≡ 1 ≡ (mqp
nq + 1)λ ≡ λ (mod pn),

the integer λ− 1 is divisible by pn, which is a contradiction. Therefore we have
nq ≤ n.

For an integer N = ⌊
√

n
logn⌋, consider all pairs (a, b) of integers such that

0 ≤ a, b ≤ N . Clearly, the number of such pairs (a, b) is (N + 1)2 > n
logn . For

each pair (a, b), define L(a, b) := an + bnq. Since 0 ≤ L(a, b) ≤ 2n3/2

(logn)1/2
for

each possible pair (a, b), there exist two pairs (a, b) 6= (a1, b1) such that

|(a−a1)n+(b−b1)nq| = |L(a, b)−L(a1, b1)| ≤
2n3/2/(logn)1/2

n/ logn− 1
< 3(n logn)1/2.

1Some part of the proof in Section 2 of [3] is not correct. Professor Luca kindly sent an
erratum to the first author.
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If we define u = a − a1, v = b − b1, then (u, v) 6= (0, 0) and |un + vnq| <

3(n logn)1/2. Furthermore we may assume that gcd(u, v) = 1 and u ≥ 0 by
changing (u, v) suitably.

Since

npn ≡ −1 (mod q) and mqp
nq ≡ −1 (mod q),

we have numv
qp

nu+nqv ≡ (−1)u+v(mod q). Now we define

Aq := numv
qp

nu+nqv − (−1)u+v = nu
1m

v
qp

(n+α)u+nqv − (−1)u+v.

First, suppose that Aq = nu
1m

v
qp

(n+α)u+nqv − (−1)u+v = 0. Then we have

nu
1m

v
q = 1, (n+ α)u+ nqv = 0 and u+ v ≡ 0 (mod 2).

Therefore there exists a positive integer ρ such that n1 = ρ−v, mq = ρu. Since
u, v are relatively prime and u+ v is even, both u and v are odd. Since mq|n1,
we have u ≤ −v. Furthermore since (pαρ−v +α)u+ nqv = 0, nq is divisible by

u. Thus q = mqp
nq +1 = ρupnq +1 = Xu+1, where X = ρpnq/u is an integer.

If u > 1, then q = Xu + 1 has a divisor X + 1, which is a contradiction. Thus
u = 1. If v = −1, thenmq = n1 = ρ and nq = pαρ+α = n+α. This implies that
q = Dp,n, which is a contradiction to the assumption that Dp,n is a composite

number. Thus v ≤ −3, n1 = ρ−v and q = ρp−(α+n)/v + 1 = (npn)−1/v + 1.
Now we will show that there is at most one prime factor q of Dp,n satisfying

the above properties. To show this, assume that q1, q2 are such prime factors.
Let qi = (npn)1/wi + 1 for each i = 1, 2 and without loss of generality, assume
that w1 < w2. Note that n1 = ρwi

i and wi | (n + α) for each i = 1, 2. If
we define W := lcm(w1, w2), then there exists a ρ0 such that n1 = ρW0 . If
we write W = w1λ for some positive odd integer λ, then ρλ0 = ρ1. Thus
q1 = ρ1p

(α+n)/w1 +1 = Y λ+1, where Y = ρ0p
(α+n)/W . This is a contradiction

for the prime q1 = Y λ + 1 has a divisor Y + 1. Thus there is at most one
prime factor q of Dp,n such that Aq = 0. Furthermore such a prime exists,

then n1 = ρw for some w ≥ 3 and q = (npn)1/w + 1 ≤ (npn)1/3 + 1.
If Aq 6= 0, then we have

q ≤ numerator of Aq ≤ p1+|nu+nqv|num|v|
q

≤ p1+3(n logn)1/2n2(n/ logn)1/2 < p1+3(n log n)1/2+(2/ log p)(n logn)1/2

< p(3.005+2/ log p)(n logn)1/2 = psp,nn
1/2

.

Note that since n is divisible by 214, 1 < 0.005(n logn)1/2. Therefore if Aq 6= 0
for every prime factor q of Dp,n, then

pn ≤ Dp,n =

k
∏

i=1

pi <

k
∏

i=1

psp,nn
1/2

= pk(sp,nn1/2),
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which implies that k > n1/2

sp,n
. Suppose that there exists a prime factor q′ of

Dp,n such that Aq′ = 0. Since q′ ≤ (npn)1/3 + 1, we have

p2n/3 <
npn

(npn)1/3 + 1
<

Dp,n

q′
<

∏

1≤i≤k

pi 6=q′

psp,nn
1/2

≤ p(k−1)sp,nn
1/2

,

which implies that k > 1 + 2n1/2

3sp,n
. Therefore we have

k > min

(

n1/2

sp,n
, 1 +

2n1/2

3sp,n

)

,

which is the desired result. �

Lemma 2.2. Let p be an odd prime. If Dp,n satisfies the Lehmer property,

then n = 2m for some integer m greater than 13.

Proof. Assume that Dp,n =
∏k

i=1 pi, where pi’s are distinct odd primes. Since

φ(Dp,n) =
∏k

i=1(pi − 1) divides Dp,n − 1 = npn, we may write pi = mip
ni + 1,

where
∏k

i=1 mi divides n and is relatively prime to p. We assume that mi ≥ mj

if and only if i ≤ j.
Since 3.005 + 2/ log p < 4.83, we have

min

(

n1/2

4.83(logn)1/2
, 1 +

n1/2

7.25(logn)1/2

)

< k < 1.45 logn.

Therefore we may assume that n < 180, 000. Suppose that n is divisible by an
odd prime q. Since

k < 1 +
log(n/q)

log 2
≤ 1 +

log(180, 000/3)

log 2
< 16.9,

we have k ≤ 16. Furthermore since

min

(

n1/2

4.83(logn)1/2
, 1 +

n1/2

7.25(logn)1/2

)

< 16,

we have n < 150, 000. Consequently 14 ≤ k ≤ 16.
Since other cases can be done in a similar manner, we only provide the proof

of the case when k = 14. From the inequality

min

(

n1/2

4.83(logn)1/2
, 1 +

n1/2

7.25(logn)1/2

)

< 14,

we have n < 110, 000. Furthermore since n is divisible by 214, the integer n is
of the form n = 214 × 3, 215 × 3 or 214 × 5.

Assume that n = 214 × 3. Since
∏14

i=1 mi | n = 214 × 3 and mi is even for
any 1 ≤ i ≤ 14, mi = 2 or 6. Thus pi is of the form 2pα + 1 or 6pα + 1.
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Moreover there is at most one i such that pi is of the form of 6pα +1. Assume
that p1 < p2 < · · · < p14. Then from the above observation, we have

p1, p2 ≥ 7, p3, p4 ≥ 19, p5, p6 ≥ 163, p7, p8 ≥ 487,
p9, p10 ≥ 1459, p11, p12 ≥ 13123 and p13, p14 ≥ 39367.

From this follows

2 ≤
Dp,n − 1

φ(Dp,n)
=

14
∏

i=1

(

1 +
1

pi − 1

)

< 1.6,

which is a contradiction. The proofs for the remaining two cases are quite
similar. �

Theorem 2.3. If an integer Dp,n satisfies the Lehmer property, then it is

prime.

Proof. Since n = 2m < 180, 000 for some integer m by the above lemma, we
have 14 ≤ m ≤ 17. Moreover since k < 1.45 logn < 17.6, we have 14 ≤ k ≤ 17.

On the other hand, since
∏k

i=1 mi | n | 217 and mi is even, we have following
seven possibilities: mi = 2 for all i ≥ 4 and

(m1,m2,m3) = (2s, 2, 2) where 1 ≤ s ≤ 4, (8, 4, 2), (4, 4, 2) and (4, 4, 4).

Since all the other cases can be done in a similar manner, we only consider the
case when (m1,m2,m3) = (4, 4, 2). In this case

p1 = 4pn1 + 1, p2 = 4pn2 + 1 and pi = 2pni + 1 for 3 ≤ i ≤ k.

Without loss of generality, we assume that n1 < n2 and n3 < · · · < nk. Note
that

2mp2
m

+ 1 = (4pn1 + 1)(4pn2 + 1)(2pn3 + 1) · · · (2pnk + 1).

If n1 6= n3, then 1 ≡ 4ps + 1 (mod ps+1) or 1 ≡ 2ps + 1 (mod ps+1), where
s = min(n1, n3). This is a contradiction. Therefore we have n1 = n3. If ni ≥ 1
for any i, then

2 ≤
Dp,n − 1

φ(Dp,n)
=

k
∏

i=1

(1 +
1

pi − 1
) = (1 +

1

4pn1

)(1 +
1

4pn2

)

k
∏

i=3

(1 +
1

2pni
)

≤ (1 +
1

12
)(1 +

1

12
)

17
∏

i=3

(1 +
1

2× 3i−2
) < 1.51,

which is a contradiction. Thus n1 = n3 = 0. Since

2mp2
m

+ 1 = (4 + 1)(2 + 1)(4pn2 + 1)(2pn4 + 1) · · · (2pnk + 1),

the prime p should be 7. This is also contradiction because pi = 2× 7ni + 1 is
divisible by 3. This completes the proof. �
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3. Arbitrary case

Assume that an integer n satisfies the Lehmer property. Let α be a positive
odd integer and let β be an integer such that n − 1 = α2β . Let us write

n =
∏k

i=1 pi, where pi’s are distinct odd primes. Then φ(n) =
∏k

i=1(pi − 1)

divides n − 1 = α2β . Since (pi − 1) divides α2β , there exist an odd integer
mpi |α and npi ≤ β such that pi = mpi2

npi + 1 for any i = 1, 2, . . . , k.

Lemma 3.1. With the above notations, we have

k < 1 +
log β

log 2
+

logα

log 3
.

Proof. Let p = pi be a prime dividing n. Assume thatmp = 1. Since p = 2np+1
is prime. the integer np should be a power of 2. Let np = 2γ for some integer

γ. Since np ≤ β, we have 0 ≤ γ < log β
log 2 . Thus there are at most log β

log 2 +1 prime

factors of n such that mp = 1.
Now assume that mp > 1. Since

∏

p|n mp divides α, the number of such

prime factors is less than or equal to logα
log 3 . Therefore we have

k < 1 +
log β

log 2
+

logα

log 3
,

which is the desired result. �

Lemma 3.2. With the above notations, if β ≥ 30, then we have

k > min

(

β1/2

tα,β
, 1 +

2β1/2

3tα,β

)

,

where tα,β = 3.1(logβ)1/2 + (2.9 logα)/(log β)1/2.

Proof. First we let N = ⌊
√

β
log β ⌋. By applying the same argument in Lemma

2.1, we may find a pair (u, v) of integers satisfying u ≥ 0, gcd(u, v) = 1,
|u|, |v| < (β/ log β)1/2 and |uβ + vnp| < 3(β log β)1/2.

Let p = pi be a prime factor of n. Since

α2β ≡ −1 (mod p) and mp2
np ≡ −1 (mod p),

we have αumv
p2

βu+npv ≡ (−1)u+v(mod p). Now we define

Ap := αumv
p2

βu+npv − (−1)u+v.

By replacing α and β with n1 and n in Lemma 2.1, respectively, one may
easily show the following: there is at most one prime factor p of n such that
Ap = 0, and in this case, α is of the form ρ−v for a suitable integer ρ, and

p = (α2β)−1/v + 1 ≤ (α2β)1/3 + 1. Moreover, when Ap 6= 0, we have

p ≤ numerator of A < 21+|βu+npv|αum
|v|
p ≤ 21+3(β log β)1/2α2(β/ log β)1/2

< 21+3(β log β)1/2+(2 logα)(β log β)1/2

< 23.1(β log β)1/2+(2.9 logα)(β/ log β)1/2 = 2tα,ββ
1/2

.
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Note that since β ≥ 30, 1 < 0.1(β log β)1/2. Thus, if Ap 6= 0 for every prime
factor p of n, then

2β < n =

k
∏

i=1

pi <

k
∏

i=1

2tα,ββ
1/2

= 2ktα,ββ
1/2

,

which implies that k > β1/2

tα,β
. Suppose that there exists a prime factor p′ of n

with Ap′ = 0. Since p′ ≤ (α2β)1/3 + 1, we have

22β/3 <
α2β + 1

(α2β)1/3 + 1
≤

n

p′
=

∏

1≤i≤k

pi 6=p′

pi < 2(k−1)tα,ββ
1/2

,

which implies that k > 1 + 2β1/2

3tα,β
. The lemma follows. �

Corollary 3.3. If max(α, 30) ≤ β, then we have

min

(

β1/2

6(log β)1/2
, 1 +

β1/2

9(log β)1/2

)

< k < 1 + 2.4 logβ.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2. �

Theorem 3.4. If n = α2β + 1 (α ≤ β) satisfies the Lehmer property, then it

is prime.

Proof. Since the number of prime factors of n is greater than or equal to 14, we
may assume that β ≥ 30. From Corollary 3.3, we have β < 1.4× 106. Assume
that a Fermat prime 22

γ

+ 1 is a factor of n. Since 22
γ

divides α2β , we have
2γ < β < 1.4 × 106. Thus we have γ ≤ 20, and in fact, γ ∈ {0, 1, 2, 3, 4}. On
the other hand, the number of prime factors p of n with mp > 1 is less than

or equal to logα
log 3 < log β

log 3 ≤ 12.9. Hence, we have k ≤ 5 + 12 = 17. Again by

Corollary 3.3, we have

min

(

β1/2

6(log β)1/2
, 1 +

β1/2

9(log β)1/2

)

< 17.

Hence, β < 260, 000.
Suppose that α is not divisible by 3. Then the number of prime factors

p of n such that mp > 1 is less than or equal to log 260,000
log 5 < 7.8. Hence

k ≤ 5 + 7 = 12, which is a contradiction by [2]. Therefore α is divisible by 3
and n is not divisible by 3. Consequently, γ 6= 0 and k ≤ 4 + 11 = 15. Now by
Corollary 3.3 again, we have

min

(

β1/2

6(log β)1/2
, 1 +

β1/2

9(log β)1/2

)

< 15.
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Therefore we have β < 200, 000.
Assume that there is a prime q > 3 dividing mpi for some i. Then

39 · q ≤ 3k−5 · q ≤

k
∏

i=1

mpi ≤ α ≤ β < 200, 000.

Hence, q = 5 or 7. If
∏k

i=1 mpi = 3a · 5b · 7c, then

3a · 5b · 7c ≤ α ≤ 200, 000 and 10 ≤ a+ b+ c.

Therefore all possible (a, b, c)’s are

(11, 0, 0), (10, 0, 0), (9, 1, 0), (9, 0, 1) and (8, 2, 0).

Assume that b 6= 0. Since γ 6= 1 in this case, we have k ≤ 13. This is a
contradiction. For each remaining (a, b, c), one may easily check that

3a · 5b · 7c · 2β + 1 6≡ 0 (mod 257) and 311 · 2β + 1 6≡ 0 (mod 17)

for any β. Hence, γ 6= 3 and γ 6= 2 if a = 11. Therefore k ≤ 13 in all cases.
This completes the proof. �

Remark 3.5. If eβ
3/14/6 > α > β ≥ 1010, then one may also show that a

composite n = α2β +1 does not satisfy the Lehmer property by using a similar
method.
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