• Title/Summary/Keyword: Ethylene Oxide

Search Result 479, Processing Time 0.031 seconds

Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems

  • Kim, So-Yeon;Cho, Seung-Hea;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.646-655
    • /
    • 2007
  • To achieve targeted drug delivery for chemotherapy, a ligand-mediated nanoparticulate drug carrier was designed, which could identity a specific receptor on the surfaces of tumor cells. Biodegradable poly(ethylene oxide)/poly$({\varepsilon}-caprolactone)$ (PEG/PCL) amphiphilic block copolymers coupled to biotin ligands were synthesized with a variety of PEG/PCL compositions. Block copolymeric nanoparticles harboring the anticancer drug paclitaxel were prepared via micelle formation in aqueous solution. The size of the biotin-conjugated PEG/PCL nanoparticles was determined by light scattering measurements to be 88-118 nm, depending on the molecular weight of the block copolymer, and remained less than 120 nm even after paclitaxel loading. From an in vitro release study, biotin-conjugated PEG/PCL nanoparticles containing paclitaxel evidenced sustained release profiles of the drug with no initial burst effect. The biotin-conjugated PEG/PCL block copolymer itself evidenced no significant adverse effects on cell viability at $0.005-1.0{\mu}g/mL$ of nanoparticle suspension regardless of cell type (normal human fibroblasts and HeLa cells). However, biotin-conjugated PEG/PCL harboring paclitaxel evidenced a much higher cytotoxicity for cancer cells than was observed in the PEG/PCL nanoparticles without the biotin group. These results showed that the biotin-conjugated nanoparticles could improve the selective delivery of paclitaxel into cancer cells via interactions with over-expressed biotin receptors on the surfaces of cancer cells.

Surface Active Properties and LCST Behavior of Oligo(propylene oxide-block-ethylene oxide) Allyl Ether Siloxane Surfactants in Aqueous Solution

  • Kim, Doo-Won;Lim, Chul-Hwan;Choi, Jae-Kon;Noh, Si-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1182-1188
    • /
    • 2004
  • Polydisperse oligo(PO-b-EO) allyl ether siloxane surfactants were synthesized by the hydrosilylation reaction of OMTS with Allyl-oligo(PO-b-EO) series. The surface tension of siloxane surfactants increased with increasing the EO chain length while it decreased with increasing the PO ratio. However, the sedimentation time of the aqueous solution showed opposite trend to the surface tension data. Both the surface tension and sedimentation time of the aqueous solution containing inorganic electrolyte gradually decreased as the content of inorganic electrolyte increased because of the surface arrangement of surfactant molecules. However, they increased with an increase of pH values due to the hydrolysis of the siloxane backbone. The $C_p$ values tended to increase with the increase in the EO chain length and decrease of the PO ratio. It seems that intermolecular interaction between PO/EO block copolymer and water affects the variation of transition temperature.

DNA Separation Using Cellulose Derivatives and PEO by PDMS Microchip

  • Kang, Chung-mu;Back, Seung-Kwon;Song, In-gul;Choi, Byung-ok;Chang, Jun-keun;Cho, Keun-chang;Kim, Yong-seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.519-523
    • /
    • 2006
  • Poly(dimethyl siloxane) (PDMS) has been employed as a microchip material for DNA separation in microfluidic condition. Different sieving molecules such as cellulose derivatives having glucose building block (methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC)) and polyethylene oxide (PEO) having linear (ring-opened ethylene oxide) unit were used and their performance was compared in terms of separation efficiency and resolution. In general, PEO showed better separation performance than cellulose derivatives probably due to the nature of linear shape polymer conformation. It was possible to perform at least 15 consecutive running with 1.2% PEO at the electric field strength around 200 V/cm. Fast analysis of the standard $\Phi$X 174 RF DNA/Hae III (less than 130s) was obtained with the number of the theoretical plate around 250,000/m. Our PMDS microchip was applied to the measurement of CAG repeat number, which is related to male infertile disease.

Thickness Dependence of Size and Arrangement in Anodic TiO2 Nanotubes

  • Kim, Sun-Mi;Lee, Byung-Gun;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3730-3734
    • /
    • 2011
  • The degree of self-assembly and the size variation of nanotubular structures in anodic titanium oxide prepared by the anodization of titanium in ethylene glycol containing 0.25 wt % $NH_4F$ at 40 V were investigated as a function of anodization time. We found that the degree of self-assembly and the size of the nanotubes were strongly dependent on thickness deviation and thus indirectly on anodization time, as the thickness deviation was caused by the dissolution of the topmost tubular structures at local areas during long anodization. A large deviation in thickness led to a large deviation in the size and number of nanotubes per unit area. The dissolution primarily occurred at the bottoms of the nanotubes ($D_{bottom}$) in the initial stage of anodization (up to 6 h), which led to the growth of nanotubes. Dissolution at the tops ($D_{top}$) was accompanied by $D_{bottom}$ after the formed structures contacted the electrolyte after 12 h, generating the thickness deviation. After extremely long anodization (here, 70 h), $D_{top}$ was the dominant mode due to increase in pH, meaning that there was insufficient driving force to overcome the size distribution of nanotubes at the bottom. Thus, the nanotube array became disorder in this regime.

Effect of annealing atmosphere on the properties of chemically deposited Ag2S thin films

  • Pawar, S.M.;Shin, S.W.;Lokhande, C.D.;Kim, J.H.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The silver sulphide (Ag2S) thin films have been chemically deposited from an alkaline medium (pH 8 to 10) by using a silver nitrate and thiourea as a Ag and S ion precursor sources. Ethylene Damine tetraacetic acid (EDTA) was used as a complexing agent. The effect of annealing atmosphere such as Ar, N2+H2S and O2 on the structural, morphological and optical properties of Ag2S thin films has been studied. The annealed films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques for the structural, morphological, and optical properties, respectively. XRD studies reveal that the as-deposited thin films are polycrystalline with monoclinic crystal structure, is converted in to silver oxide after air annealing. The surface morphology study shows that grains are uniformly distributed over the entire surface of the substrate. Optical absorption study shows the as-deposited Ag2S thin films with band gap energy of 0.92eV and after air annealing it is found to be 2.25 eV corresponding to silver oxide thin films.

  • PDF

Aggregation Prodesses of Hydrophobically Modified Polythylene Oxide

  • Baek, Gi Uk;Kim, Beom Seong;Kim, Eung Ryeol;Son, Dae Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.623-627
    • /
    • 2000
  • Aggregation of hydrophobically end-capped poly(ethylene oxide)s: HEURs, denoted as $C_8$$EO_{380}$$C_8$, $C_12$$CO_{600}$$C_{12}$, and $C_{18}$$EO_{860}$$C_{18}$,are described using static fluorescence, dynamic light scattering, and atomic force microscope (AFM) techniques. The CAC (critical aggregation concentration) was determined by com-paring two fluorescent peaks which were influenced by the polarity of the probe dye molecules, pyrene. The aggregation occurs in concentrations higher than 10 g/L of $C_8$$EO_{380}$$C_8$ and the CAC decreases by increasing the side chain length. The dynamic light scattering experiment shows fast mode and slow mode decays, and both are diffusive. The fast mode does not depend on the concentration, but the slow mode shows concentration dependence influenced by the formation of an aggregated structure. The hydrophobic end groups effect more dominantly than the main chains for the formation of HEUR micelles. By increasing the concentration, the HEUR micelles change their structure from spheres to rodlike micelles, and finally make fused structures, which were visualized with atomic force microscopy.

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction (자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법)

  • Hwang, Jin Uk;Tak, Woo Seong;Nam, Sang Yong;Kim, Woo Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2019
  • To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Separation of Mixtures for Anionic and Nonionic Surfactants by Thin Layer Chromatography (음이온성 및 비이온성 계면활성제 혼합물의 Thin Layer Chromatography에 의한 분리)

  • Kim, Tae-Seong;Lee, Jae-Duk;Yun, Yeo-Gyung
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.249-255
    • /
    • 1990
  • The conditions for separation and identification of anionic and nonionic surfactants by thin layer chromatography were investigated. Polyoxy alkylene-type nonionic surfactants were identified by the distribution of alkyl chain and alkylene oxide. Various polyoxyethylenated nonyl phenols were easily distinguished by densitometer. Some anionic surfactants were identified by $R_f$ and color, and the mixtures of anionic and nonionic surfactants were separated. Polyoxyethylenated fatty acid was separated into three parts of diester, monoester and polyethylene glycol, respectively, and the mixed ratio was determined by densitomer. All the experiments were carried out in 13-20 minutes, and the length of run was 80mm.

  • PDF

Crystal Structures of Dehydrated $Ag^+\;and\;Zn^{2+}$ Exchanged Zeolite A, $(Ag_{2.8}Zn_{4.6}-A)$ and of Its Ethylene Sorption Complex (은 이온과 아연 이온으로 치환한 제올라이트 A $(Ag_{2.8}Zn_{4.6}-A)$의 탈수한 결정구조와 이것에 에틸렌을 흡착시킨 결정구조)

  • Mi Suk Jeong;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 1991
  • Two crystal structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ and of its ethylene sorption complex have been determined by single-crystal X-ray diffraction techniques. The structures were solved and refined in the cubic space group Pm3m at 23(1)$^{\circ}$C. Dehydration of two crystals studied were achieved at 400$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 250 Torr of ethylene at 25(1)$^{\circ}$C. The structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ (a = 12.137(2) ${\AA}$ and of its ethylene sorption complex (a = 12.106(2)${\AA}$) were refined to final error indices, R(weighted) = 0.044 with 237 reflections and R(weighted) = 0.050 with 301 reflections, respectively, for which I > 3${sigma}$(I). 2.8 $Ag^+$ ions are recessed 0.922(2) ${\AA}$ from (111) plane of three 6-ring oxygens into the large cavity where each forms a lateral ${\pi}$ complex with an ethylene molecule. These $Ag^+$ ions are in 2.240(5)${\AA}$ from three framework oxide ions and 2.290(5) ${\AA}$ from each carbon atom of an ethylene molecule. The $Zn^{2+}$ ions occupy two different threefold axis positions of the unit cell. 2.8 $Zn^{2+}$ ions are recessed 0.408(2) ${\AA}$ from (111) plane of the 6-ring oxygens and each $Zn^{2+}$ ion forms a $\pi$ complex with an $C_2H_4$ molecule. The distances between $Zn^{2+}$ ions and carbon atom of ethylene molecule, Zn(2)-C = 2.78(4) ${\AA}$ are long. This indicates that this bond is relatively weak.

  • PDF