DOI QR코드

DOI QR Code

Synthesis of Graphene Coated Aluminum Powders by Self-assemble Reaction

자기 조립 반응에 의한 그래핀이 코팅된 알루미늄 입자의 합성 방법

  • Hwang, Jin Uk (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Tak, Woo Seong (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Nam, Sang Yong (Functional Nano lab. Department of Polymer Engineering, Gyeongsang National University) ;
  • Kim, Woo Sik (Fibrous Ceramics & Aerospace Materials Center, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology)
  • 황진욱 (한국세라믹기술원 세라믹섬유항공소재센터) ;
  • 탁우성 (한국세라믹기술원 세라믹섬유항공소재센터) ;
  • 남상용 (경상대학교 고분자공학과) ;
  • 김우식 (한국세라믹기술원 세라믹섬유항공소재센터)
  • Received : 2019.09.26
  • Accepted : 2019.10.25
  • Published : 2019.10.28

Abstract

To improve the mechanical properties of aluminum, graphene has been used as a reinforcing material, yielding graphene-reinforced aluminum matrix composites (GRAMCs). Dispersion of graphene materials is an important factor that affects the properties of GRAMCs, which are mainly manufactured by mechanical mixing methods such as ball milling. However, the use of only mechanical mixing process is limited to achieve homogeneous dispersion of graphene. To overcome this problem, in this study, we have prepared composite materials by coating aluminum particles with graphene by a self-assembly reaction using poly vinylalcohol and ethylene diamine as coupling agents. The scanning electron microscopy and Fourier-transform infrared spectroscopy results confirm the coating of graphene on the Al surface. Bulk density of the sintered composites by spark plasma sintering achieved a relative density of over 99% up to 0.5 wt.% graphene oxide content.

Keywords

References

  1. D. P. Bishop, J. R. Cahoon, M. C. Chaturvedi, G. J. Kipouros and W. F. Caley: Mater. Sci. Eng., A, 290 (2000) 16. https://doi.org/10.1016/S0921-5093(00)00957-6
  2. A. K. Geim and K. S. Novoselov: Nat. Mater., 6 (2007) 183. https://doi.org/10.1038/nmat1849
  3. J. W. Suk, R. D. Piner, J. An and R. S. Ruoff: ACS Nano, 4 (2010) 6557. https://doi.org/10.1021/nn101781v
  4. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff: Adv. Mater., 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
  5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau: Nano Letters, 8 (2008) 902. https://doi.org/10.1021/nl0731872
  6. G. Lalet, H. Kurita, J. M. Heintz, G. Lacombe, A. Kawasaki and J. F. Silvain: J. Mater. Sci., 49 (2014) 3268. https://doi.org/10.1007/s10853-014-8032-7
  7. S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor and N. Koratkar: Mater. Sci. Eng., A, 528 (2011) 7933. https://doi.org/10.1016/j.msea.2011.07.043
  8. J. M. Torralba, C. E. da Costa and F. Velasco: J. Mater. Process. Technol., 133 (2003) 203. https://doi.org/10.1016/S0924-0136(02)00234-0
  9. S. Wang, M. Tambraparni, J. Qiu, J. Tipton and D. Dean: Macromolecules, 42 (2009) 5251. https://doi.org/10.1021/ma900631c
  10. K. Morsi and A. Esawi: J. Mater. Sci., 42 (2007) 4954. https://doi.org/10.1007/s10853-006-0699-y
  11. M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang and X. Wang: Composites Part B, 60 (2014) 111. https://doi.org/10.1016/j.compositesb.2013.12.043
  12. S. J. Yan, S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen and Z. M. Lin: Mater. Sci. Eng., A, 612 (2014) 440. https://doi.org/10.1016/j.msea.2014.06.077
  13. W.-M. Tian, S.-M. Li, B. Wang, X. Chen, J.-H. Liu and M. Yu: Int. J. Miner. Metall. Mater., 23 (2016) 723. https://doi.org/10.1007/s12613-016-1286-0
  14. J.-J. Shao, W. Lv and Q.-H. Yang: Adv. Mater., 26 (2014) 5586. https://doi.org/10.1002/adma.201400267
  15. H. Bai , C. Li , X. Wang and G. Shi: Chem. Commun., 46 (2010) 2376 . https://doi.org/10.1039/c000051e
  16. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang: Adv. Mater., 20 (2008) 4490. https://doi.org/10.1002/adma.200801306
  17. J. Wang, Z. Li, G. Fan, H. Pang, Z. Chen and D. Zhang: Scripta Mater., 66 (2012) 594. https://doi.org/10.1016/j.scriptamat.2012.01.012
  18. L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness and W. Y. Yeung: Carbon, 49 (2011) 1965. https://doi.org/10.1016/j.carbon.2011.01.021
  19. C. Zhang, D. M. Dabbs, L.-M. Liu, I. A. Aksay, R. Car and A. Selloni: J. Phys. Chem. C, 119 (2014) 18167. https://doi.org/10.1021/acs.jpcc.5b02727
  20. M. Rashad, F. Pan, A. Tang and M. Asif: Prog. Nat. Sci., 24 (2014) 101. https://doi.org/10.1016/j.pnsc.2014.03.012
  21. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J. F. Lofer and P. J. Uggowitzer: Mater. Sci. Eng., A, 448 (2007) 1. https://doi.org/10.1016/j.msea.2006.11.088
  22. N. H. Kim, T. Kuila and J. H. Lee: J. Mater. Chem. A, 1 (2013) 1349. https://doi.org/10.1039/C2TA00853J