• Title/Summary/Keyword: Estrogen receptor beta

Search Result 156, Processing Time 0.027 seconds

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.

Estrogen-related receptor γ is a novel catabolic regulator of osteoarthritis pathogenesis

  • Son, Young-Ok;Chun, Jang-Soo
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.165-166
    • /
    • 2018
  • Osteoarthritis (OA) is the most common form of arthritis and is a leading cause of disability with a large socioeconomic cost. OA is a whole-joint disease characterized by cartilage destruction, synovial inflammation, osteophyte formation, and subchondral bone sclerosis. To date, however, no effective disease-modifying therapies for OA have been developed. The estrogen-related receptors (ERRs), a family of orphan nuclear receptor transcription factors, are composed of $ERR{\alpha}$, $ERR{\beta}$, and $ERR{\gamma}$, which play diverse biological functions such as cellular energy metabolism. However, the role of ERRs in OA pathogenesis has not been studied yet. Among the ERR family members, $ERR{\gamma}$ is markedly upregulated in human and various models of mouse OA cartilage. Adenovirus-mediated overexpression of $ERR{\gamma}$ in the mouse knee joint tissue caused OA pathogenesis. Additionally, cartilage-specific $ERR{\gamma}$ transgenic (Tg) mice exhibited enhanced experimental OA. Consistently, $ERR{\gamma}$ in articular chondrocytes directly caused expression of matrix metalloproteinase (MMP) 3 and MMP13, which play a crucial role in cartilage destruction. In contrast, genetic ablation of Esrrg or shRNA-mediated Esrrg silencing in the joint tissues abrogated experimental OA in mice. These results collectively indicated that $ERR{\gamma}$ is a novel catabolic regulator of OA pathogenesis and can be used as a therapeutic target for OA.

15d-PGJ2 Induces Apoptosis of MCF-7 and MDA-MB-231 Cells via Increased Intracellular Calcium and Activation of Caspases, Independent of ERα and ERβ

  • Muhammad, Siti Nur Hasyila;Mokhtar, Noor Fatmawati;Yaacob, Nik Soriani
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3223-3228
    • /
    • 2016
  • Reports indicate that 15-deoxy-delta-12,14-prostaglandin-J2 (15d-PGJ2) has anticancer activities, but its mechanisms of action have yet to be fully elucidated. We therefore investigated the effects of 15d-PGJ2 on the human breast cancer cell lines, MCF-7 (estrogen receptor $ER{\alpha}+/ER{\beta}+$) and MDA-MB-231 ($ER{\alpha}-/ER{\beta}+$). Cellular proliferation and cytotoxicity were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays while apoptosis was determined by fluorescence microscopy and flow cytometry using annexin V-propidium iodide (PI) staining. ER expression was determined by Western blotting. Intracellular calcium was stained with Fluo-4 AM while intracellular caspase activities were detected with Caspase-$FLICA(R)$ and measured by flow cytometry. We showed that 15d-PGJ2 caused a significant increase in apoptosis in MCF-7 and MDA-MB-231 cells. $ER{\alpha}$ protein expression was reduced in treated MCF-7 cells but pre-incubation with the $ER{\alpha}$ inhibitor' ICI 182 780' did not affect the percentage of apoptotic cells. The expression of $ER{\beta}$ was unchanged in both cell lines. In addition, 15d-PGJ2 increased intracellular calcium ($Ca^{2+}$) staining and caspase 8, 9 and 3/7 activities. We therefore conclude that 15d-PGJ2 induces caspase-dependent apoptosis that is associated with an influx of intracellular $Ca^{2+}$ with no involvement of ER signaling.

Effect of Recombinant Human FSH on the Estrogen Synthesis by Human Fetal Ovarian Tissues Cultured In Vitro (재조합 인간 나포자극 호르몬이 체외배양중인 태아 난소조직의 에스트로젠 합성에 미치는 영향)

  • 이경아
    • Development and Reproduction
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 1997
  • The present study was conducted to determine the effect of recombinant human follicle stimulating hormone (rhFSH) on the estrogen synthesis by human fetal ovarian tissues. Fetal ovaries were 18-19 weeks old (18 wks:n=1, 19 wks:n=2). One case of 19-week-old fetal ovaries were obtained from anencephalic fetus. Obtained ovarieswere cleaned and diced around $600\mu\textrm{m}$ pieces, and cultured in the sandwich agar bed system for 21-23 days. Estrone ($E_{1}$) and estradiol-17 $\beta$($E_{2}$) in the medium was measured by radioimmunoassay. Amount of $E_{2}$ synthesis was greater than $E_{1}$ in both normal cases. In contrast, fetal ovaries from anencephalic fetus did not produce neither $E_{1}$ nor $E_{2}$ in the presence or absence of rhFSH. Results suggest that the fetal ovaries have a capacity of estrogen production at 18-19 weeks of gestation Existence of FSH receptor is also supposed. Different results by anecephalic fetal ovaries suggest the difference in the development between normal and anencephalic fetal ovaries.

  • PDF

Anti-Menopausal Effect of Heat-Killed Bifidobacterium breve HDB7040 via Estrogen Receptor-Selective Modulation in MCF-7 Cells and Ovariectomized Rats

  • Hyeon Jeong Kim;Kyung Min Kim;Min-Kyu Yun;Duseong Kim;Johann Sohn;Ji-Won Song;Seunghun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1580-1591
    • /
    • 2024
  • Menopause is induced by spontaneous ovarian failure and leads to life quality deterioration with various irritating symptoms. Hormonal treatment can alleviate these symptoms, but long-term treatment is closely associated with breast and uterine cancer, and stroke. Therefore, developing alternative therapies with novel anti-menopausal substances and improved safety is needed. In our study, heat-killed Bifidobacterium breve HDB7040 significantly promoted MCF-7 cell proliferation in a dose-dependent manner under estrogen-free conditions, similar to 17β-estradiol. This strain also triggered ESR2 expression, but not ESR1, in MCF-7 cells. Moreover, administrating HDB7040 to ovariectomized (OVX) Sprague-Dawley (SD) female rats reduced estrogen deficiency-induced weight gain, fat mass, blood triglyceride, and total cholesterol levels. It also recovered collapsed trabecular microstructure by improving trabecular morphometric parameters (bone mineral density, bone volume per tissue volume, trabecular number, and trabecular separation) and decreasing blood alkaline phosphatase levels with no significant changes in uterine size and blood estradiol. HDB7040 also significantly regulated the expression of Tff1, Pgr, and Esr2, but not Esr1 in uteri of OVX rats. Heat-killed B. breve HDB7040 exerts an anti-menopausal effect via the specific regulation of ERβ in vitro and in vivo, suggesting its potential as a novel substance for improving and treating menopausal syndrome.

Effects of 3-dimensional Co-culture of Human Endometrial Cells Decidualized with Progesterone and TGF-${\beta}1$ on the Development of Mouse 2-cell Embryos In Vitro (Progesterone과 TGF-${\beta}1$에 의해 탈락막화가 유도된 인간 자궁내막세포의 삼차원 공배양이 2-세포기 생쥐배아의 체외발달에 미치는 영향)

  • Kwon, Wook-Hyun;Kim, Hwi-Gon;Lee, Dong-Hyung;Ko, Kyung-Rae;Lee, Kyu-Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.1
    • /
    • pp.49-60
    • /
    • 2008
  • Objective: This study was carried out to investigate the effects of 3-dimensional co-culture of human endometrial cells decidualized with progesterone and TGF-${\beta}1$ on the development of 2-cell mouse embryos. Methods: Stromal and epithelial cells isolated from human endometrial tissue were immunostained for cytokeratin and vimentin. Expression of TGF-${\beta}1$, its receptor-1, -2, integrin-${\beta}3$ and prolactin in mono or co-culture according to three different hormone conditions was investigated by RT-PCR. Differential staining was used to investigate the number of ICM and trophectoderm of hatched mouse blastocysts in different three conditions. Results: The immunohistochemical study was positive for cytokeratin or vimentin and confirmed that epithelial and stromal cells were isolated from endometrial tissue successfully. In co-culture, TGF-${\beta}1$, its receptor-1, integrin-${\beta}3$ and prolactin except TGF-${\beta}1$-r2 were expressed in progesterone dominant condition. The hatching and attaching rate were higher in the co-culture with decidualized cells (p<0.05). However, we observed that lots of the incomplete hatched blactocysts attached on non-decidualized cells. The ICM number of hatched mouse blastocysts was higher in co-culture with decidualized and non decidualized cells than media only culture (p<0.05). The trophectoderm number of hatched blastocyst was higher in the co-culture with decidualized cells than non-decidualized cells or media only culture (p<0.05). Conclusion: The administration of progesterone, estrogen and TGF-$\beta$ could induce decidualization of stromal and epithelial cells isolated from human endometrial tissue using 3-dimensional co-culture, and the decidualization of human endometrial cells could increase the hatching and attaching rate of 2-cell mouse embryos.

Study on Estrogenic Activities of Phthalate Esters Using E-screen Assay and Competitive Binding Assay (E-screen Assay 및 상경적 결합반응을 이용한 Phthalate Esters의 내분비계 장애 작용 연구)

  • 한순영;한상국;문현주;김형식;이동하;김소희;김태성;박귀례
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.141-146
    • /
    • 2000
  • Phthalate esters are used extensively as a plasticizer in the manufacture of plastic products such as PVC bags and medical devices. Recently, phthalate esters have been shown to induce endocrine system mediated responses. However. only a Jew studies have been conducted for estrogenic activity of phthalate esters. In this study estrogenic activities of seven phthalate esters. butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), di-n-butylphthalate (DBP), diethylphthalate (DEP), di-n-pentylphthalate (DPP), di-n-propylphthalate (DPrP) and dicyclohexylphthalate (DCHP), were examined in vitro using E-screen assay and competitive binding assay. From the E-screen assay, BBP. DEHP. DBP and DEP showed weak estrogenic activity at the concentration of 5 $\mu\textrm{M}$. The relative proliferative effect (RPE) and the relative proliferative potency (RPP) were 50~70% and 0.01%. respectively, when compared with 500 pM of 17$\beta$-estradiol (E2). In competitive binding assay with the rat uterine estrogen receptor (ER), BBP and DEP showed weak binding potency [(l/$10^4$~1/$10^5$ of E2] while DEHP and DBP scarcely bound to ER. These results suggest that some phthalate esters have weak estrogenic activities in vitro.

  • PDF

Evaluation of Estrogenic Effects of Phthalate Analogues Using in vitro and in vivo Screening Assays

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were classified in the category of "suspected" endocrine disruptors. The purpose of our study was to screen and elucidate the endocrine disrupting activity of seven phthalate analogues. E-screen assay was performed in MCF-7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) showed high estrogenic activity. Their relative proliferation efficiencies (RPE) were 109 and 106%, respectively. In vitro estrogen receptor (ER) binding assay, BBP, di-n-octyl phthalate (DOP) and dinonyl phthalate (DNP) showed weak relative binding affinity (RBA: 0.02%) compared to $17{\beta}-estradiol\;(E2)$ (RBA: 100%). In uterotrophic assay, E2 produced a significant increase, whereas four tested phthalate analogues had potential estrogenic effects in vitro did not increased in uterus weight in immature rats. From these results, we demonstrated that phthalate analogues exhibit weak estrogenic activity in vitro assays at high concentrations. Although phthalates induced an increase in MCF-7 cell proliferation by an estrogenic effect, they could not induce a uterus weight increase in vivo. From these, we may suggest that these phthalate analogues are easily metabolized to inactive forms in vivo. Further investigation in other in vitro and in vivo experimental systems might be required.

The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts (피부 섬유아세포에서 다이드제인의 파이토에스트로겐 효과)

  • Kim, Mi-Sun;Hong, Chan Young;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • Estrogen deficiency results in a reduction of skin quality and function in postmenopausal women. Over the past decade, many studies have supported that estrogen provides anti-aging effects as a result of the ability of estrogen to prevent skin collagen decline, restore skin elasticity, and increase skin hydration in postmenopausal women skin. Due to their structural similarity with estrogen, isoflavones have been called phytoestrogens. Photoprotective effects of isoflavones are well established while their estrogenic-like activities are not fully understood in human skin. In this study, we investigated whether daidzein, an effective isoflavone, has phytoestrogenic activity and induces transcriptional change of extracellular matrix components in dermal fibroblasts. We examined the luciferase activity of daidzein and ${\beta}$-estradiol using transiently transfected NIH3T3-ERE cells. The estrogenic receptor-dependent transcriptional activity was increased in a dose-dependent manner when treated with daidzein, with a maximum of 2.5-fold induction at $10{\mu}g/mL$ of daidzein compared with non-treated control. In addition, daidzein significantly in creased the expressions of collagen type I, collagen type IV, elastin, and fibrillin-1 in human dermal fibroblasts. By comparing with the effects of ${\beta}$-estradiol through out all the experiments, we confirmed that daidzein had estrogenic activity and function in fibroblasts. These results suggest that daidzein-based application, having both photoprotective and phytoestrogenic effects, may be a powerful approach for skin anti-aging of postmenopausal women.