Effects of 3-dimensional Co-culture of Human Endometrial Cells Decidualized with Progesterone and TGF-${\beta}1$ on the Development of Mouse 2-cell Embryos In Vitro

Progesterone과 TGF-${\beta}1$에 의해 탈락막화가 유도된 인간 자궁내막세포의 삼차원 공배양이 2-세포기 생쥐배아의 체외발달에 미치는 영향

  • Kwon, Wook-Hyun (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Kim, Hwi-Gon (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Lee, Dong-Hyung (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University) ;
  • Ko, Kyung-Rae (Infertility Clinic, Pusan National University Hospital) ;
  • Lee, Kyu-Sup (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University)
  • 권욱현 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 김휘곤 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 이동형 (부산대학교 의학전문대학원 산부인과학교실) ;
  • 고경래 (부산대학교병원 불임클리닉) ;
  • 이규섭 (부산대학교 의학전문대학원 산부인과학교실)
  • Published : 2008.03.30

Abstract

Objective: This study was carried out to investigate the effects of 3-dimensional co-culture of human endometrial cells decidualized with progesterone and TGF-${\beta}1$ on the development of 2-cell mouse embryos. Methods: Stromal and epithelial cells isolated from human endometrial tissue were immunostained for cytokeratin and vimentin. Expression of TGF-${\beta}1$, its receptor-1, -2, integrin-${\beta}3$ and prolactin in mono or co-culture according to three different hormone conditions was investigated by RT-PCR. Differential staining was used to investigate the number of ICM and trophectoderm of hatched mouse blastocysts in different three conditions. Results: The immunohistochemical study was positive for cytokeratin or vimentin and confirmed that epithelial and stromal cells were isolated from endometrial tissue successfully. In co-culture, TGF-${\beta}1$, its receptor-1, integrin-${\beta}3$ and prolactin except TGF-${\beta}1$-r2 were expressed in progesterone dominant condition. The hatching and attaching rate were higher in the co-culture with decidualized cells (p<0.05). However, we observed that lots of the incomplete hatched blactocysts attached on non-decidualized cells. The ICM number of hatched mouse blastocysts was higher in co-culture with decidualized and non decidualized cells than media only culture (p<0.05). The trophectoderm number of hatched blastocyst was higher in the co-culture with decidualized cells than non-decidualized cells or media only culture (p<0.05). Conclusion: The administration of progesterone, estrogen and TGF-$\beta$ could induce decidualization of stromal and epithelial cells isolated from human endometrial tissue using 3-dimensional co-culture, and the decidualization of human endometrial cells could increase the hatching and attaching rate of 2-cell mouse embryos.

목 적: 자궁내막조직에서 분리한 상피세포와 기질세포를 삼차원 공배양을 통한 탈락막화 유도에서 성호르몬과 TGF-${\beta}1$의 역할을 알아보고 2-세포기 생쥐배아와 탈락막화가 유도된 자궁내막세포와의 공배양을 통하여 포배형성율, 부화율, 포배기배아의 내세포괴와 영양막세포수 및 부착율을 알아보기 위해 시행되었다. 연구방법: 인간 자궁내막조직에서 분리된 기질세포와 상피세포의 표지인자인 cytokeratin과 vimentin에 대한 면역조직 화학염색을 실시하여 분리를 확인하였으며, 성호르몬 우세환경 (progesterone, estrogen)에서 분리된 세포를 단일배양 혹은 3차원 공배양을 통하여 RT-PCR법으로 TGF-${\beta}1$, 수용체-1, -2, integrin-${\beta}3$, prolactin의 발현을 조사하였다. 배양액군을 대조군으로 하여 2-세포기 생쥐배아와 탈락막화 유도와 유도하지 않은 인간 자궁내막세포와의 공배양을 통하여 포배형성율, 부화율, 부착율과 부화된 포배의 영양막세포와 내세포괴수를 비교하였다. 결 과: 상피세포 표지인자인 cytokeratin과 기질세포 표지인자인 vimentin을 이용하여 면역조직화학염색을 한 결과 각각 95% 이상에서 양성반응을 나타내어 자궁내막조직으로부터 상피세포와 기질세포가 성공적으로 분리되었음을 확인하였다. 분리된 상피세포와 기질세포를 단일배양에서는 성호르몬의 조건에 관계없이 TGF-${\beta}1$과 수용체 type-1, type-2, integrin-${\beta}3$, prolactin mRNA가 발현되지 않았다. 공배양에서는 progesterone 우세환경일 경우 TGF-${\beta}1$ 수용체 type-2를 제외한 모든 mRNA가 발현하였으나 estrogen 우세환경에서는 TGF-${\beta}1$ 수용체 type-2와 prolactin이 발현되지 않았다. 2-세포기 생쥐배아를 배양액군, 비탈락막군 및 탈락막군으로 나누어 공배양하였을 때 포배기 발달율은 차이가 없었으나 부화율 (92%)과 부착율 (82%)은 탈락막군이 유의하게 높았으며 (p<0.05), 비탈락막군의 공배양에서 다수의 영양막세포가 투명대를 완전히 빠져나오지 않은 상태로 부착한 비정상형태를 보였다. 부화된 생쥐 포배기배아의 내세포괴수는 탈락막화에 관계없이 공배양한 포배의 내세포괴수가 유의하게 많았으며 (p<0.05), 영양막세포수는 탈락막군에서 배양액군과 비탈락막군보다 유의하게 많았다 (p<0.05). 결 론: 자궁내막조직에서 상피세포와 기질세포를 분리하여 다시 삼차원적 공배양을 통하여 progesterone (100 nM), estrogen (1 nM)과 TGF-${\beta}1$ (10 ng/ml)을 첨가하면 체외에서 탈락막화를 유도할 수 있으며, 탈락막화를 유도한 자궁내막 세포와 2-세포기 생쥐배아를 공배양하였을 때 탈락막화가 부화율, 부착율 및 영양막세포수에 유효한 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Finn CA. The biology of decidual cells. Adv Reprod Physiol 1971; 5: 1-26 https://doi.org/10.1016/S0065-2911(08)60404-X
  2. Hewitt K, Beer AE, Grinnell E. Disappearance of amnionic sites from the surface of the rat endometrial epithelium at the time of blastocyst implantation. Biol Reprod 1979; 21: 691 -707 https://doi.org/10.1095/biolreprod21.3.691
  3. Fukuda MN, Sato T, Nakayama J, Klier G, Mikami M, Aoki D, et al. Trophinin and fasin, a novel cell adhesion molecule complex with potential involvement in embryo implantation. Genes Dev 1995; 9: 1199-210 https://doi.org/10.1101/gad.9.10.1199
  4. Nikas G, Drakakis P, Loutradis D, Mara-Skoufari C, Koumantakis E, Michalas S, et al. Uterine pinopodes as marker of the nidation window in cycling women receiving exogenous oestradiol and progesterone. Human Reprod 1995; 10: 1208-13 https://doi.org/10.1093/oxfordjournals.humrep.a136120
  5. Martel D, Frydman R, Glissant M, Maggioni C, Roche D, Psychoyos A. Scanning electron microscopy of postovulatory human endometrium in spontaneous cycles and cycles stimulated by hormone treatment. J Endocrinol 1987; 114: 319-24 https://doi.org/10.1677/joe.0.1140319
  6. Popovici RM, Kao LC, Giudice LC. Discovery of new inducible genes in in vitro decidualized human endometrial stromal cells using microarray technology. Endocrinology 2000; 141: 3510-3 https://doi.org/10.1210/en.141.9.3510
  7. Irwin JC, Kirk D, King RJ, Quigley MM, Gwatkin RB. Hormonal regulation of human endometrial stromal cells in culture: an in vivo model for decidualization. Fertil Steril 1989; 52: 761-8 https://doi.org/10.1016/S0015-0282(16)61028-2
  8. Tang B, Guller S, Gurpide E. Cyclic adenosine 3',5'-monophosphate induces prolactin expression in stromal cells isolated from human proliferative endometrium. Endocrinology 1993; 133: 2197-203 https://doi.org/10.1210/en.133.5.2197
  9. Tang B, Grupide E. Direct effect of gonadotropins on decidualization of human endometrial stromal cells. J Steroid Biochem Mol Biol 1993; 47: 115-21 https://doi.org/10.1016/0960-0760(93)90064-4
  10. Frank GR, Brar AK, Cendars MI, Handwerger S. Prostaglandin E2 enhances human endometrial cell differentiation. Endocrinology 1994; 134: 258-63 https://doi.org/10.1210/en.134.1.258
  11. Ando N, Hirahara F, Fukushima J, Kawamoto S, Okuda K, Funabashi T, et al. Differential gene expression of TGF-beta isoforms and TGF-beta receptors during the first trimester of pregnancy at the human maternal-fetal interface. Am J Reprod Immunol 1998; 40: 48-56 https://doi.org/10.1111/j.1600-0897.1998.tb00388.x
  12. Kim MR, Park DW, Lee JH, Choi DS, Hwang KJ, Ryu HS, et al. Progesterone-dependent release of transforming growth factor-beta 1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signaling in stromal cells. Mol Hum Reprod 2005; 11: 801-8 https://doi.org/10.1093/molehr/gah240
  13. 박동욱, 최동순, 김미란, 황경주, 조미영, 안성희 등. 인간 자궁내막의 탈락막화 (Decidualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할. 대한불임학회지 2003; 30: 65-75
  14. Arnold JT, Kaufman PG, Seppala M, Lessey BA. Endometrial stromal cells regulate epithelial cell growth factor in vitro: a new co-culture model. Hum Reprod 2001; 16: 836-45 https://doi.org/10.1093/humrep/16.5.836
  15. Thouas GA, Korfiatis NA, French AJ, Jones GM, Trounson AO. Simplified techniques for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod Bio Med Online 2001; 3: 25-9 https://doi.org/10.1016/S1472-6483(10)61960-8
  16. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol 1975; 122: 262-3 https://doi.org/10.1016/S0002-9378(16)33500-1
  17. Bentin-Ley U, Pederson B, Lindenberg S, Larsen JF, Hamberger L, Horn T. Isolation and culture of human endometrial cells in a three-dimensional culture system. J Reprod Fertil 1994; 101: 327-32 https://doi.org/10.1530/jrf.0.1010327
  18. Rotraud W. The transforming growth factor-beta signaling pathway in tumorigenesis. Current opinion in Oncology 2001; 13: 70-7 https://doi.org/10.1097/00001622-200101000-00014
  19. Lessey BA, Castebaum AJ, Wolf L, Greene W, Paulson M, Meyer WR. Use of integrins to date the endometrium. Fertil Steril 2000; 73: 779-87 https://doi.org/10.1016/S0015-0282(99)00604-4
  20. Takeuchi K, Maruyama I, Yamamoto S, Oki T, Nagata Y. Isolation and monolayer culture of human fallopian tube epithelial cells. In Vitro Cell Dev Biol 1991; 27: 720-4 https://doi.org/10.1007/BF02633217
  21. Bongso A, Ng SC, Fong CY, Anandakumar C, Marshall B, Edirisinghe R, Ratnam S. Improved pregnancy rate after transfer of embryos grown in humann fallopian tubal cell co-culture. Fertil Steril 1992; 58: 569-74 https://doi.org/10.1016/S0015-0282(16)55265-0
  22. Bongso A, Ng SC, Sathananthan H, Lian NP, Rauff M, Ratnam SS. Improved quality of human embryos when co-cultured with human ampullary cells. Hum Reprod 1989b; 4: 706-13 https://doi.org/10.1093/oxfordjournals.humrep.a136971
  23. Bongso A, Ng SC, Fong CY, Ratnam S. Improved fertilization rates of human oocytes in co-culture. J In Vitro Fert Embryo Transf 1991; 8: 216-21 https://doi.org/10.1007/BF01130808
  24. Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod 1996; 11: 177-83 https://doi.org/10.1093/oxfordjournals.humrep.a019013
  25. Seshagiri PB, Bavister B. Phosphate is required for inhibition by glucose of development of hamster 8-cell embryos in vitro. Biol Reprod 1989; 40: 607-14 https://doi.org/10.1095/biolreprod40.3.607
  26. Crabtree HG. Observations on the carbohydrate metabolism of tumors. Biochem J 1929; 23: 536-45 https://doi.org/10.1042/bj0230536
  27. Koobs DH. Phosphate mediation of the Crabtree and Pasteur effects. Science 1972; 178: 127-33 https://doi.org/10.1126/science.178.4057.127
  28. Gardner DK, Lane M. Culture and selection of viable blastocyst: a feasible proposition for human IVF? Hum Reprod Update 1997; 3: 367-82 https://doi.org/10.1093/humupd/3.4.367
  29. Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf 1986; 3: 215-7 https://doi.org/10.1007/BF01132806
  30. Fukui Y, McGowan LT, James RW, Pugh PA, Tervit HR. Factors affecting the in vitro development to blastocysts of bovine oocytes matured and fertilized in vitro. J Reprod Fertil 1991; 92: 125-31 https://doi.org/10.1530/jrf.0.0920125
  31. Noda Y, Matsumoto H, Umaoka Y, Tatsumi J, Mori T. Involvement of superoxide radicals in the mouse two-cell block. Mol Reprod Dev 1991; 28: 356-60 https://doi.org/10.1002/mrd.1080280408
  32. Legge M, sellens MH. Free radical scavengers ameliorate the 2-cell block in mouse embryo culture. Hum Reprod 1991; 6: 867-71 https://doi.org/10.1093/oxfordjournals.humrep.a137442
  33. Bischof P, Campana A. A model for implantation of human blastocyst and early placentation. Hum Reprod Update 1996; 2: 262-70 https://doi.org/10.1093/humupd/2.3.262
  34. Simon C, Gimeno MJ, Mercader A, Frances A, Garcia Velasco J, Remohi J, et al. Cytokines-adhesion molecules-invasive proteinases. The missing paracrine/autocrine link in embryonic implantation? Mol Hum Reprod 1996; 6: 405-24
  35. Tamada H, Das SK, Andrews GK, Dey SK. Cell-type-specific expression of transforming growth factor-${\alpha}$ in the mouse uterus during the peri-implantation period. Biol Reprod 1991; 45: 365-72 https://doi.org/10.1095/biolreprod45.2.365
  36. Librach CL, Feigenbaum SI, Bass KE. Interleukin-1 beta regulates human cytoblast metalloproteinase activity and invasion in vitro. J Biol Chem 1994; 269: 7125-31
  37. Lessey BA, Arnold JT, Cui TY, Verastas N, Sadovsky Y, Quigley JP, et al. Paracrine signaling in the endometrium: integrins and establishment of uterine receptivity. J Reprod Immunol 1998; 39: 105-16 https://doi.org/10.1016/S0165-0378(98)00016-3
  38. Iwasaki S, Mizuno J, Kobayashi K, Yoshikane Y, Hayashi T. Changes in morphology and cell number of inner cell mass of porcine blastocysts during freezing. Theriogenology 1994; 42: 841-8 https://doi.org/10.1016/0093-691X(94)90452-O
  39. Richter KS, Harris DC, Daneshmand ST, Shapiro BS. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril 2001; 76: 1157-67 https://doi.org/10.1016/S0015-0282(01)02870-9
  40. Papaioannou VE, Ebert KM. The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development 1988; 102: 793-803