• Title/Summary/Keyword: Estimation Performance

Search Result 6,196, Processing Time 0.029 seconds

A Novel Channel Estimation using 2-Dimensional Linear Iinterpolation for OFDM MIMO systems (2차원 선형보간법을 이용한 OFDM MIMO 시스템에서의 채널 추정)

  • Oh, Tae Youl;Ahn, Sung Soo;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • An OFDMA(Orthogonal Frequency Division Multiple Access) includes a MIMO(Multi-Input Multi-Output) scheme for improving spectral efficiency and data throughput. Recognizing that the performance of MIMO system is heavily dependent upon the accuracy of channel estimation, we propose a novel channel estimation for the MIMO scheme based on OFDMA. Conventional interpolation-based channel estimation suffers from poor estimation error at specific subcarriers. Proposed scheme makes use of a planar interpolation instead of linear interpolation for those subcarriers of bad accuracy. Simulation results show that the proposed scheme improves the performance of MIMO system by improving the accuracy in channel estimation especially for the adverse subcarrier positions. It is observed that the proposed scheme outperforms the conventional method by about 2dB in terms of both mean squared error and overall bit error rate with a reasonable computational complexity.

Advanced surface spectral-reflectance estimation using a population with similar colors (유사색 모집단을 이용한 개선된 분광 반사율 추정)

  • 이철희;김태호;류명춘;오주환
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.280-287
    • /
    • 2001
  • The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evacuate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth ColorChecker. As a result, the proposed method showed a lower mean square ems between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.

  • PDF

A New Diversity Combining Scheme Based on Interleaving Method for Time-of-arrival Estimation of Chirp Signal

  • Jang, Seong-Hyun;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.153-158
    • /
    • 2012
  • A new diversity combining scheme is proposed for time-of-arrival (TOA) estimation of chirp signal in dense multipath channel. In the multipath channel, the performance of TOA estimation using conventional correlation matrix-based diversity combining scheme is degraded due to the lack of de-correlation effect. To increase the de-correlation effect, the proposed diversity scheme employs interleaving method based on the property of de-chirped signal. As a result, the proposed scheme increases de-correlation effect and also reduces the noise of TOA estimation. Finally, the diversity achieved from the proposed scheme improves TOA estimation performance. The de-correlation effect is analyzed mathematically. The estimation accuracy of the proposed diversity scheme is superior to that of conventional diversity scheme in multipath channel.

Angle-of-Arrival Estimation Algorithm Based on Combined Array Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The Angle-of-Arrival (AOA) estimation in real time is one of core technologies for the real-time tracking system, such as a radar or a satellite. Although AOA estimation algorithms for various antenna types have been studied, most of them are for the single-shaped array antenna suitable to the specific frequency. In this paper, we propose the cascade AOA estimation algorithm for the combined array antenna with Uniform Rectangular Frame Array (URFA) and Uniform Circular Array (UCA), with the excellent performance for various frequencies. The proposed technique is consisted of Capon for roughly finding AOA groups with multiple signal AOAs and Beamspace Multiple Signal Classification (MUSIC) for estimating the detailed signal AOA in the AOA group, for the combined array antenna. In addition, we provide computer simulation results for verifying the estimation performance of the proposed algorithm.

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

Performance Analysis of Sequential Estimation Schemes for Fast Acquisition of Direct Sequence Spread Spectrum Systems (직접 수열 확산 대역 시스템의 고속 부호 획득을 위한 순차 추정 기법들의 성능 분석)

  • Lee, Seong Ro;Chae, Keunhong;Yoon, Seokho;Jeong, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.467-473
    • /
    • 2014
  • In the direct sequence spread spectrum system, the correct synchronization is very important; hence, several acquisition schemes based on the sequential estimation have been developed. Typically, the rapid acquisition sequential estimation (RASE) scheme, the seed accumulating sequential estimation (SASE) scheme, the recursive soft sequential estimation (RSSE) scheme have been developed for the correct acquisition. However, the objective performance comparison and analysis between former estimation schemes have not been performed so far. In this paper, we compare and analyze the performance of the above sequential estimation schemes by simulating the correct chip probability and the mean acquisition time (MAT).

A Channel Estimation Technique Based on Pilot Tones for OFDM Systems with a Symbol Timing Offset (시간 동기 옵셋을 갖는 OFDM 시스템을 위한 파일럿 톤 기반의 채널 추정 기법)

  • Park, Chang-Hwan;Kim, Jae-Kwon;Lee, Hee-Soo;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.992-1003
    • /
    • 2007
  • In this paper, a channel estimation technique based on pilot tones, which does not degrade channel estimation performance even with the existence of symbol timing offset (STO) in OFDM systems, is proposed. The proposed technique performs channel estimation by interpolating channels with respect to amplitude and phase with a minimum computational complexity, differently from the conventional interpolation techniques. The proposed technique requires neither the estimation of fine STO in advance nor trigonometric operation for phase interpolation, signifying a significant reduction in computational complexity. Since the performance of the proposed technique does not depend on the STO present in OFDM systems. It can be directly applied to the following areas in OFDM-based communication system: elimination of fine STO estimation step in the synchronization procedure, elimination of STO estimation step in multiuser uplink, and channel estimation in multi-hop relay system. It is verified by computer simulation that the proposed technique can improve the performance of channel estimation significantly in the presence of STOs, compared with previous channel estimation techniques based on pilot tones.

A study on the Channel Estimation Scheme in IEEE 802.11 Based System (IEEE 802.11 기반 시스템에서 채널추정에 관한 연구)

  • Kim, Hanjong
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.249-254
    • /
    • 2014
  • Wireless LAN system is evolving toward high-speed data transmission and more accurate channel estimation is necessarily required to improve communication performance. The PLCP preamble field in IEEE 802.11 based wireless MODEM consists of ten short symbols and two long symbols and is used for synchronization and channel estimation. The existing least square (LS) channel estimation is based on only two long training symbols. After estimating channel response separately by using each long training symbol, the final channel estimation is obtained by the average of each estimation. In this paper, a new channel estimation algorithm is presented to improve the performance of the existing LS channel estimation algorithm. From the fact that the short training symbol consists of 12 non-zero subcarriers, it gives us a clue of being able to additionally estimate at least one fourth of channel coefficients. The new LS algorithm performs channel estimation based on both two long training symbols and a short training symbol. The proposed LS algorithm shows a little bit performance improvement over the existing LS estimation and it will be able to be applied to the IEEE 802.11p WAVE system.

Improving Performance and Routability Estimation in Deep-submicron Placement

  • Cho, June-Dong;Cho, Jin-Youn
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1998
  • Placement of multiple dies on an MCM or high-performance VLSI substrate is a non-trivial task in which multiple criteria need to be considered simultaneously to obtain a true multi-objective optimization. Unfortunately, the exact physical attributes of a design are not known in the placement step until entire design process is carried out. When the performance issues are considered, crosstalk noise constraints in the form of net separation and via constraint become important. In this paper, for better performance and wirability estimation during placement for MCMs, several performance constraints are taken into account simultaneously. A graph-based wirability estimation along with the Genetic placement optimization technique is proposed to minimize crosstalk, crossing, wirelength and the number of layers. Our work is significant since it is the first attempt at bringing the crosstalk and other performance issues into the placement domain.

  • PDF

Performance Comparison of Estimation Methods for Dynamic Conditional Correlation (DCC 모형에서 동태적 상관계수 추정법의 효율성 비교)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.1013-1024
    • /
    • 2015
  • We compare the performance of two representative estimation methods for the dynamic conditional correlation (DCC) GARCH model. The first method is the pairwise estimation which exploits partial information from the paired series, irrespective to the time series dimension. The second is the multi-dimensional estimation that uses full information of the time series. As a simulation for the comparison, we generate a multivariate time series similar to those observed in real markets and construct a DCC GARCH model. As an empirical example, we constitute various portfolios using real KOSPI 200 sector indices and estimate volatility and VaR of the portfolios. Through the estimated dynamic correlations from the simulation and the estimated volatility and value at risk (VaR) of the portfolios, we evaluate the performance of the estimations. We observe that the multi-dimensional estimation tends to be superior to pairwise estimation; in addition, relatively-uncorrelated series can improve the performance of the multi-dimensional estimation.