• Title/Summary/Keyword: Estimated equation

Search Result 1,947, Processing Time 0.037 seconds

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Studies on the Denitrification in the Submerged Paddy Soil -IV. Influences of soil organic matter contents, soil temperature, pH values, kinds and levels of N-fertilizer on the evolution of N2O gas (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)4보(報) 토양유기물함량(土壤有機物含量), 온도(溫度), pH, 질소비종(窒素肥種) 및 시비량(施肥量)이 탈질작용(脫窒作用)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Seung Hwan;Park, Jun Kyu;An, Sang Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 1987
  • A series of laboratory experiments were carried out to find the effects of soil organic matter contents, soil temperature, pH values, kinds and amount of nitrogen fertilizers on the denitrification-$N_2O$ gas evolution-. The results obtained were summarized as follows: 1. Denitrification rate, amount of $N_2O$ gas evolution, was influenced the order of organic matter contents>soil temperature>pH values>kinds of N-fertilizer>levels of N-fertilizer. 2. The highest dentrification rate was observed in organic matter content of 3.0%, pH values at 6.0 with application of $KNO_3$ at levels of 20 mgN/100g soil. 3. For the evolution of I mole $N_2O$ gas, averaged carbon consumption was obtained as 0.5 mole in all these experiment condition. However, the highest carbon consumption rate was obtained in organic matter contents for 1.0% with application of $(NH_4)_2SO_4$ at levels of 10 mgN/100g soil (1.06 mole) while lowest carbon consumption rate was obtained in organic matter contents for 3.0% with application of $KNO_3$ at levels of 20 mgN/100g soil (0.13 mole). 4. According to Michaelis-Menten's equation, the V/2 values for evolution of $N_2O$ gas was estimated by progress curve. The results obtained was as 550 ug for $(NH_2)_2CO$ and 1100 ug $N_2O/100g$ soil by application of $KNO_3$ in organic matter contents of 1.0% soil. On the other hand, when the application $(NH_4)_2SO_4$ the V/2 values of $N_2O$ gas was obtained as the amount of 490 ug/100g soil while V/2 values of $N_2O$ gas by application of $KNO_3$ was on the linear line in soil organic matter contents of 3.0%.

  • PDF

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optimum K2O Application Levels in Paddy Soils. -II. Determination of Potassium Supplying Power by Gapon equation and Kas/Kai and Response to K2O application (수도(水稻)의 가리시비반응(加里施肥反應)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評價) -II. Gapon식(式)과 Kas/Kai에 의한 가리공급력(加里供給力) 측정(測定)과 시비반응(施肥反應))

  • Park, Yang-Ho;Ahn, Su-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.363-370
    • /
    • 1984
  • In order to predict the possible fertilizer requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/Kai and Gapon coefficients, KG. were determined for the soil samples before flooding and at heading stage of rice in pot experiment. These parameters assumed as the K supplying capacity of soils were discussed through correlation with other factors such as grain yields or the amounts of $K_2O$ uptake by the rice plant. The results may be summarized as follows: 1. The KGo values in soils before flooding were 7.8, 6.6, and 7.1, whereas the Kas/Kai values were 1.37, 1.26 and 2.11, respectively, in clay, loam and sandy loam soils. 2. The significant yield responses to the application of potassium fertilizer were observed whenever the KG values in soils at heading stage become larger to the original KG values, regardless of any levels of fertilizer application. 3. The linear correlations between the exchangeable cation ratios [Kex./(Ca+Mg) ex.:me/100g] in soils and the potassium activity ratios ($[K^+]/\sqrt{[Ca^{{+}{+}}+Mg^{{+}{+}}]}$: mole/l) in equilibrium solutions were observed with different linear gradients according to the soil properties. 4. The Kas/Kai in the soils, estimated prior to the experiment, showed high correlations with the grain yields or the amounts of $K_2O$ uptake in the all treatments, while the Kas/Kai and the KGo in the soils at heading stage showed high correlations with the grain yields or the amounts of $K_2O$ uptake in only N 15 Kg/10a treatments. 5. The Kas/Kai and the KGo values determined in the soil at heading stage of rice showed high negative correlation each other and they could be used as soil factors for predicting potassium fertilizer requirement.

  • PDF

Best Management Practices Reducing Soil Loss in the Saprolite Piled Upland in Hongcheon Highland (고령지 석비레 성토 밭의 토양유실 저감을 위한 최적영농관리방안)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Jung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Soil erosion at Jawoon-Ri in Hongcheon highland is one of serious problems since saprolite piling on farmland has been typically practiced at 2-3 year's intervals. The objective of the case study was to survey management practices such as tillage, application of saprolite, and cultivating crops and to propose best management practices (BMP) to reduce soil loss in Jawoon-Ri, Hongcheon-Gun. Jawoon-Ri is located in the upper stream of Naerinchun. Upland areas of Jawoon 2 and 4Ri were 206.9 and 142.3 hectare, respectively. Estimation of soil loss in this study was based on USLE (Universal soil loss equation). Annual averaged soil losses were 15.6 MT per hectare in Jawoon-2Ri and 9.0 MT per hectare in Jawoon-4Ri, respectively. This case study tried to find methods to reduce soil erosion below tolerant soil loss level which is $11MT\;ha^{-1}\;yr^{-1}$. Estimated soil losses in more than 40% of uplands in Jawoon-2Ri and 4Ri were higher than tolerant soil loss level. Especially, edge of uplands undergone excessive soil erosion by concentrated runoff water. Therefore consolidation of upland edge was included as one of the proposed Best management practices BMP). The proposed BMP in this area were buffer strips, contour and mulching, diversion drain channel, grassed water-way, detour watet-way and cover crops and so on. Amounts for BMP requirements were 7,680 m for buffer strips, 123 ha (35%) for contour and mulching, 201 ha (57%) for diversion drain channel, 13,880 m for grassed water-way, 3,860 m for detour drainage, 8,365 m for sloping side consolidation and 3,492 ha for cover crops, respectively. Application of BMP are urgently needed in uplands which is direct conjunction with stream.

Effects of Phosphate and Potash Fertilizers on the Yield and Nicotine Content of Tobacco Leaves (인산(燐酸) 및 가리비료(加里肥料)가 엽연초(葉煙草)의 수량(收量) 및 니코틴의 함량(含量)에 미치는 영향(影響))

  • Cho, S.J.;Kim, J.J.;Bae, H.W.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 1969
  • This experiment was carried out to determine the effect of different levels of phosphate and potash firtilizers applied on yields and quality of leaf tobacco. It was done at all varying levels of phosphate and potassium fertilizers $S_0$ (non-fertilizer plot);N:P:K=0:0:0 (Kg/10a) $S_1$ (1/2 amount plot);N:P:K=10:7.5:10 (Kg/10a) $S_2$ (standard plot);N:P:K=10:15:20 (Kg/10a) $S_3$ (1.5 times plot);N:P:K=10:22.5:30(Kg/10a) $S_4$ (2.0times plot);N:P:K==10:30:40 (Kg/10a) Urea was applied as nitrogen, triple superphosphate as phosphate, potassium sulfate as potash source. The total amount of fertilizers was applied as basal dressing per one plant. This experiment was carried out by using randomized block design with 3 replication. The results obtained in terms of yields and quality are summarized as follows. 1. By increasing the amounts of phosphate and potassium fertilizers, growing status of the largest leaf length, the largest leaf width and stem size of tobacco increased in the order of $S_4>S_3>S_2>S_1>S_0$. 2. By increasing the amount of phosphate and potassium fertilizers, yield was increased in the order of $S_4>S_3>S_2>S_1>S_0$, This increase showed generally high significance among various levels of treatments. 3. The regressive equation was derived from the relationship between treatment levels and tobacco leaf yield. The most desirable treatment level for the maximum yield was estimated as the 2.87 times as much as the treatment level of phosphate and potasium fertilizers of standard plot. 4. By increased application of phosphate and potash fertilizers, the contents of $P_2O_5$ and $K_2O$ in the tobacco leaf became greater while the content of nicotine was decreased. Thus, a negative correlation between fertilizer application and nicotine content has been observed.

  • PDF

Shelf-life of Prepacked Kimbab and Sandwiches Marketed in Convenience Stores at Refrigerated Condition (편의점에서 판매되는 김밥 및 샌드위치의 냉장조건에서의 유통기한)

  • Koo, Min-Seon;Kim, Yoon-Sook;Shin, Dong-Bin;Oh, Se-Wook;Chun, Hyang-Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.323-331
    • /
    • 2007
  • This study was designed to estimate self-life of Kimbab and sandwiches marketed in convenience store. While the 12 different type of Kimbab (n=6) and sandwiches (n=6) were kept at $10^{\circ}C$ for 72 hours, quality changes including volatile basic nitrogen, aerobic plate count, pathogens detection and sensorial property was monitored, and effective quality indicators were selected. Volatile basic nitrogen, indicator for protein deterioration was slightly increased during storage periods in all samples. E. coli, Staphylococcus aureus, Salmonella spp. and Vibrio parahaemolyticus were not detected from any of samples. Change of aerobic plate count of Kimbab and sandwiches were increased moderately but increased dramatically after 48 hours of storage. Overall acceptability were maintained over 5, purchasing power limit, for 40 hours in 4 general Kimbab, 48 hours in 2 samgak Kimbab and 42 hours in 2 sandwiches. Shelf-life of each item was calculated from regression equation between reference limit from effective quality indicators, aerobic plate count and sensory property, and storage period. Estimated shelf-lives of general Kimbab were $15{\sim}33$ hours, samgak Kimbab were 32 hours and sandwiches were $27{\sim}30$ hours at $10^{\circ}C$ refrigerated condition.

Dissipation Patterns of Triazole Fungicides Estimated from Kinetic Models in Apple (Triazole계 살균제의 사과 중 잔류양상의 Kinetic Model 적용)

  • Kim, Ji-Hwan;Hwang, Jeong-In;Jeon, Young-Hwan;Kim, Hyo-Young;Ahn, Ji-Woon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.4
    • /
    • pp.235-239
    • /
    • 2012
  • While cultivating crops, it is important to predict the biological half-lives of applied pesticides to ensure the safety of agricultural products. Dissipation patterns of the triazole fungicides, such as diniconazole and metconazole, during the cultivation of apple were established by utilizing the dissipation curve. As well as, the biological half-lives of the pesticides in apples were calculated using the residue amounts of them. The apples were harvested from 0 to 14 days after spraying diniconazole (WP) and metconazole (SC) at a recommended and three times of the recommended dose. Initial concentrations of diniconazole in apple were 0.09 and 0.15 mg/kg at a recommended and three times of the recommended dose, respectively, which were below MRL 1.0 mg/kg established by KFDA. The equations of biological half-life were $C_t=0.0811e^{-0.179x}$(half life: 3.9 days) and $C_t=0.1451e^{-0.148x}$ (half life: 4.7 days), respectively. In case of metconazole, initial concentrations in apple were 0.10 and 0.25 mg/kg, below MRL 1.0mg/kg, and biological half-life equations were $C_t=0.0857e^{-0.055x}$ (half life: 12.6 days) and $C_t=0.2304e^{-0.052x}$ (half life: 13.3 days), respectively. Therefore, when triazole fungicides were applied during the cultivation of apple, the biological half-life need to be calculated with the optimal equation model.

The Simulation of Pore Size Distribution from Unsaturated Hydraulic Conductivity Data Using the Hydraulic Functions (토양 수리학적 함수를 이용한 불포화 수리전도도로부터 공극크기분포의 모사)

  • Yoon, Young-Man;Kim, Jeong-Gyu;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Until now, the pore size distribution, PSD, of soil profile has been calculated from soil moisture characteristic data by water release method or mercury porosimetry using the capillary rise equation. But the current methods are often difficult to use and time consuming. Thus, in this work, theoretical framework for an easy and fast technique was suggested to estimate the PSD from unsaturated hydraulic conductivity data in an undisturbed field soil profile. In this study, unsaturated hydraulic conductivity data were collected and simulated by the variation of soil parameters in the given boundary conditions (Brooks and Corey soil parameters, ${\alpha}_{BC}=1-5L^{-1}$, b = 1 - 10; van Genuchten soil parameters, ${\alpha}_{VG}=0.001-1.0L^{-1}$, m = 0.1 - 0.9). Then, $K_s$ (1.0 cm $h^{-1})$ was used as the fixed input parameter for the simulation of each models. The PSDs were estimated from the collected K(h) data by model simulation. In the simulation of Brooks-Corey parameter, the saturated hydraulic conductivity, $K_s$, played a role of scaling factor for unsaturated hydraulic conductivity, K(h) Changes of parameter b explained the shape of PSD curve of soil intimately, and a ${\alpha}_{BC}$ affected on the sensitivity of PSD curve. In the case of van Genuchten model, $K_s$ and ${\alpha}_{VG}$ played the role of scaling factor for a vertical axis and a horizontal axis, respectively. Parameter m described the shape of PSD curve and K(h) systematically. This study suggests that the new theoretical technique can be applied to the in situ prediction of PSD in undisturbed field soil.

Variations of Physical Properties Depending on the Height of Reactor in Vertical Composting Process (수직형 퇴비화공정에서 반응조 높이구간별 퇴비화물질의 물성변화에 관한 연구)

  • Kim, Yong Seong;Kim, Byung Tae;Lee, Chang Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.115-124
    • /
    • 2007
  • The material compressions in the vertical composting reactor affect to the biodegradation rates of the organic wastes. This study investigated the variations of physical properties of the composting materials according to the height of reactor due to affect to the settlement in the vertical composting reactor. The variations of decreased temperature after peak temperature showed the different patterns depending on the reactor heights. The variation width of re-increased temperature after peak temperature was reduced as the mixing operations were increased, and increased as the height of reactor elevated. The moisture content and the variation width of the moisture content were increased higher as the height of the reactor became higher. The variations of the bulk density at each height of vertical reactor showed the same tendency comparing with those of the moisture content. The relationship between bulk density and moisture content had shown the quadratic equation (r2=0.94). The dry solid contents at each reactor height were decreased as the height of reactor were increased. The results of the variation of the physical properties during the composting process were caused by the downward compression of the material into the reactor. Settlement rate in the vertical composting reactor was estimated about 2.184cm/day. To increase the biodegradation efficiency in the vertical reactor, the conditions of air path in the composting material matrix have to be investigated afterwards.

  • PDF

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations (차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁)

  • Baek, Woohyeon;Ha, Suhyeon;Hong, Sumin;Kim, Seonah;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.59-71
    • /
    • 2016
  • To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.