DOI QR코드

DOI QR Code

차바자이트의 흡착 및 이온 교환 특성: Cs 및 다른 양이온과의 경쟁

Sorption and Ion Exchange Characteristics of Chabazite: Competition of Cs with Other Cations

  • 백우현 (경북대학교 지구시스템과학부) ;
  • 하수현 (경북대학교 지구시스템과학부) ;
  • 홍수민 (경북대학교 지구시스템과학부) ;
  • 김선아 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Baek, Woohyeon (School of Earth System Sciences, Kyungpook National University) ;
  • Ha, Suhyeon (School of Earth System Sciences, Kyungpook National University) ;
  • Hong, Sumin (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Seonah (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 투고 : 2016.03.07
  • 심사 : 2016.06.10
  • 발행 : 2016.06.30

초록

방사성 폐기물의 주요 성분 중 하나인 Cs의 자연에서 정출되는 제올라이트인 차바자이트(chabazite)에 대한 흡착 특성을 알아보기 위해 XRD, EPMA, EC, pH, ICP 분석방법을 이용하여 동정 및 화학성분 분석을 하였다. 그리고 추가적으로 양이온 교환능력을 확인하였고 시간과 농도에 따른 Cs 흡착 및 타 양이온($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$)에 대한 경쟁흡착 실험을 실시하였다. 본 연구에 사용된 차바자이트의 화학식은 $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$였고 Si/Al 비율과 양이온 교환능력은 각각 1.50와 238.1 meq/100 g으로 측정되었다. 시간과 농도에 따른 Cs 흡착 등온 실험결과를 흡착 반응 속도 모델과 등온 흡착 모델에 적용해본 결과 각각 유사 2차 반응과 Freundlich 모델에 부합하였으므로 고체 표면에 흡착 물질이 2개 이상의 다중 흡착 층을 이루는 것을 알 수 있으며 모델로부터 유도되는 상수 값을 통해 차바자이트의 Cs 흡착 능력정도를 평가하였다. 경쟁 흡착 실험 결과 이온의 종류에 따라 이온 교환되어 차바자이트 내에 존재하는 Cs의 몰 분율에서 차이를 보였다. 각 양이온과 세슘과의 액체에서 고체 내로 흡착되는 경쟁 경향이 $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ 그리고 $Rb^+$ 순으로 선택성이 있었으며 이는 수화 직경의 순서와 유사한 양상을 보였다. Kielland 도시법을 이용하여 Cs과 타 양이온의 교환 평형관계를 도시해 보았을 때에는 $Sr^{2+}$가 가장 선택성이 높았으며 그 다음으로 $Na^+$, $Li^+$, $K^+$, $Rb^+$ 순으로 선택성이 나타났고 모든 타 양이온에 대하여 양의 값을 나타내었다. Kielland 도시법에서 나타나는 평형상수 값의 순서는 열역학 및 반응 속도론적인 의미를 내포하고 있으므로 수용액에서 공극 내로 들어가는 Cs은 $Sr^{2+}$과의 공존 시 선호도가 높다는 것을 알 수 있다. 이는 경쟁하고 있는 수화된 양이온 간의 직경 차이가 원인일 것으로 추측된다. 본 연구 결과는 차바자이트가 높은 Cs 친화력을 가지는 것을 보여줌으로써 방사성 물질로 오염된 물에서 Cs을 선택적으로 교환할 수 있음을 보여주고 있다.

To investigate the sorption characteristics of Cs, which is one of the major isotopes of nuclear waste, on natural zeolite chabazite, XRD, EPMA, EC, pH, and ICP analysis were performed to obtain the informations on chemical composition, cation exchange capacity, sorption kinetics and isotherm of chabazite as well as competitive adsorption with other cations ($Li^+$, $Na^+$, $K^+$, $Rb^+$, $Sr^{2+}$). The chabazite used in this experiment has chemical composition of $Ca_{1.15}Na_{0.99}K_{1.20}Mg_{0.01}Ba_{0.16}Al_{4.79}Si_{7.21}O_{24}$ and its Si/Al ratio and cation exchange capacity (CEC) were 1.50 and 238.1 meq/100 g, respectively. Using the adsorption data at different times and concentrations, pseudo-second order and Freundlich isotherm equation were the most adequate ones for kinetic and isotherm models, indicating that there are multi sorption layers with more than two layers, and the sorption capacity was estimated by the derived constant from those equations. We also observed that equivalent molar fractions of Cs exchanged in chabazite were different depending on the ionic species from competitive ion exchange experiment. The selectivity sequence of Cs in chabazite with other cations in solution was in the order of $Na^+$, $Li^+$, $Sr^{2+}$, $K^+$ and $Rb^+$ which seems to be related to the hydrated diameters of those caions. When the exchange equilibrium relationship of Cs with other cations were plotted by Kielland plot, $Sr^{2+}$ showed the highest selectivity followed by $Na^+$, $Li^+$, $K^+$, $Rb^+$ and Cs showed positive values with all cations. Equilibrium constants from Kielland plot, which can explain thermodynamics and reaction kinetics for ionic exchange condition, suggest that chabazite has a higher preference for Cs in pores when it exists with $Sr^{2+}$ in solution, which is supposed to be due to the different hydration diameters of cations. Our rsults show that the high selectivity of Cs on chabazite can be used for the selective exchange of Cs in the water contaminated by radioactive nuclei.

키워드

참고문헌

  1. Adabbo, M., Caputo, D., de Gennaro, B. Pansini, M., and Colella, C. (1999) Ion exchange selectivity of phillipsite for Cs and Sr as a function of framework composition. Microporous and Mesoporous Materials, 28, 315-324. https://doi.org/10.1016/S1387-1811(98)00246-7
  2. Adamson, A.W. and Gast, A.P. (1997) Physical Chemistry of Surfaces. Wiley - Interscience, New York, 6, 784.
  3. Alsenani, G. (2013) Studies on adsorption of crystal violet dye from aqueous solution onto calligonum comosum leaf powder (CCLP). Journal of American Science. 9, 30-35.
  4. Ames, Jr., L.L. (1961) Cation sieve properties of the open zeolites chabazite, mordenite, erionite and clinoptilolite. American Mineralogist, 46, 9-10, 1120-1131.
  5. Ames, Jr., L.L. (1964) Zeolite cation selectivity. The Canadian Mineralogist, 8, 325-333.
  6. Atun, G. and Bodur, N. (2002) Retention of Cs on zeolite, bentonite and their mixtures. Journal of Radioanalytical and Nuclear Chemistry, 253, 275-279. https://doi.org/10.1023/A:1019658011221
  7. Azizian, S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. https://doi.org/10.1016/j.jcis.2004.03.048
  8. Barrer, R.M. and Klinowski, J. (1974) Ion exchange selectivity and electrolyte concentration. Journal of the Chemical Society, 1, 70, 2080-2091.
  9. Baerlocher. (2007), Atlas of Zeolite Framework Types, 19.
  10. Bnmner, G.O. and Meier, W.M. (1989) Framework density distribution of zeolite-type tetrahedral nets. Nature, 337, 146-147. https://doi.org/10.1038/337146a0
  11. Breck, D.W. (1974) Zeolite molecular sieves: structure. Chemistry and Use, Wiley, New York, 636.
  12. Breck, D.W., Eversole, W.G., and Milton, R.M. (1956) New synthetic crystalline zeolites. Journal of the American Chemical Society, 78, 2338-2339. https://doi.org/10.1021/ja01591a082
  13. Dada, A.O., Olalekan, A.P., Olatunya, A.M., and DADA, O, (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of $Zn^{2+}$ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3, 38-45. https://doi.org/10.9790/5736-0313845
  14. Donald, S.R. and Quirine (2011) Recommended Methods for Determining Soil Cation Exchange. Recommended Soil Testing Procedures for the Northeastern United States, Cooperative Bulletin No. 493, Chapter 9.
  15. Dyer, A., Amini, S., Enamy, H., El-Naggar, H.A., and Anderson, M.W. (1993) Cation-exchang in synthetic zeolite L: the exchange of hydronium and ammonium ions by alkali metal and alkaline earth cations. Zeolites, 13, 281-290. https://doi.org/10.1016/0144-2449(93)90007-P
  16. Dyer, A. and Zubair, M. (1998) Ion exchange in chabazite. Microporous and Mesoporous Materials. 22, 135-150. https://doi.org/10.1016/S1387-1811(98)00069-9
  17. El-Naggar, I. M., Zakaria, E.S., Ali, I.M., Khalil, M., and El-Shahat, M.F. (2012) Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arabian Journal of Chemistry, 5, 109-119. https://doi.org/10.1016/j.arabjc.2010.09.028
  18. Foo, K.Y. and Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2-10. https://doi.org/10.1016/j.cej.2009.09.013
  19. Fytianos, F., Voudrias, E., and Bozani, E. (2002) Sorption - description isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest: The International Journal, 4, 75-83.
  20. Gaines, G.L. and Thomas, H.C. (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. The Journal of Chemical Physics, 21, 714. https://doi.org/10.1063/1.1698996
  21. Gillman, G.P. and Sumpter, E.A. (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research, 24, 61-66. https://doi.org/10.1071/SR9860061
  22. Glover, E.T., Faanu, A., and Fianko, J.R. (2010) Dissolution kinetics of stilbite at various temperatures under alkaline conditions. West African Journal of Applied Ecology, 16, 95-105.
  23. Goldberg, S. (2005) Equations and models describing adsorption processes in soils. Chemical Processes in Soils, SSSA Book Series, no. 8, 489-517.
  24. Haghseresht, F. and Lu, G. (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels, 12, 1100-1107. https://doi.org/10.1021/ef9801165
  25. Ho, Y.S. and McKay, G. (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8
  26. Hodgkinson, E.S. and Hughes, C.R. (1999) The mineralogy and geochemistry of cement/rock reactions: high-resolution studies of experimental and analogue materials. Geological Society, London, Special Publications, 157, 195-211. https://doi.org/10.1144/GSL.SP.1999.157.01.15
  27. Kim, H.S., Park, W.K., Lee, H.Y., Park, J.S., and Lim, W.T. (2014) Characterization of natural zeolite for removal of radioactive nuclides. Journal of the Mineralogical Society of Korea, 27, 31-41 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.1.31
  28. Lee, C.P., Kuo, Y.M., Tsai, S.C., Wei, Y.Y., Teng, S.P., and Hsu, C.N. (2008) Numerical analysis for characterizing the sorption/desorption of cesium in crushed granite. Journal of Radioanalytical and Nuclear Chemistry, 275, 343-349. https://doi.org/10.1007/s10967-007-7013-6
  29. McBride, M.B. (1994) Environmental chemistry of soils. Oxford University Press, New York, 406p.
  30. Meng, F.W. (2005) Study on a Mathematical Model in Predicting Breakthrough Curves of Fixed-bed Adsorption onto Resin Adsorbent. MS Thesis, Nanjing University, China, 28-36.
  31. Nightingale, E.R. (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry, 63, 1381-1387. https://doi.org/10.1021/j150579a011
  32. Ohtaki, H. and Radnai, T. (1993) Structure and dynamics of hydrated ions. Chemical Reviews, 93, 1157-1204. https://doi.org/10.1021/cr00019a014
  33. Oliveira, C.R. and Rubio, J. (2007) New basis for adsorption of ionic pollutants onto modified zeolites. Minerals Engineering, 20, 552-558. https://doi.org/10.1016/j.mineng.2006.11.002
  34. Osmanliouglu, A.E. (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. Journal of Hazardous Materials, 137, 332-335. https://doi.org/10.1016/j.jhazmat.2006.02.013
  35. Pan, B.C., Qiu, H., Lv, L., Zhang, Q.J., Zhang, W.M., and Zhang, Q.X. (2009) Critical review in adsorption kinetic models. Journal of Zhejiang University SCIENCE A, 10, 716-724. https://doi.org/10.1631/jzus.A0820524
  36. Roque-Malherbe, R.M.A. (2009) The Physical Chemistry of Materials: Energy and Environmental Applications. CRC Press, 342-346.
  37. Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallography, A32, 751-767.
  38. Shaobin W. (2010) Natural zeolites as effective adsorbents in water and wastewater treatment, Chemical Engineering Journal, 11-24.
  39. Shimizu, K., Hasegawa, K., Nakamuro, Y., Kodama, T., and Komarneni, S. (2004) Alkaline earth cation exchange with novel Na-3-mica: kinetics and thermodynamic selectivities. Journal of Materials Chemistry, 14, 1031-1035. https://doi.org/10.1039/b314013j
  40. Townsend, R.P. (1984) Thermodynamics of ion exchange in clays. Philosophical Transactions of the Royal Society A, 311, 301-314. https://doi.org/10.1098/rsta.1984.0030
  41. Valiskó, M., Boda, D., and Gillespie, D. (2007) Selective adsorption of ions with different diameter and valence at highly charged interfaces. Journal of Physical Chemistry C, 111, 15575-15585. https://doi.org/10.1021/jp073703c
  42. Volkov, A.G., Paula, S., and Deamer, D.W. (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry and Bioerergetics, 42, 153-160. https://doi.org/10.1016/S0302-4598(96)05097-0
  43. Zones, S.I. (1985) Chevron Research Company. Patent 4, 544, 538.