• 제목/요약/키워드: Esophageal Smooth Muscle Cells

검색결과 12건 처리시간 0.029초

Inhibition of C2-ceramide induced contraction in cat esophageal smooth muscle cell by newly synthesized Ceramide analogues

  • Lee, Doo-Won;Yang, Sung-Jun;Lee, Yul-Pyo;Lee, Tai-Sang;Park, Jun-Hong;Choi, Su-Hang;Yim, Chul-Bu;Sohn, Uy-Dong;Choi, Tae-Sik
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.248.1-248.1
    • /
    • 2002
  • It has been shown that C2-ceramide (C2), short chain ceramide, plays a role in mediating contraction of cat esophageal smooth muscle cells. We examined the effect of newly synthesized ceramide analogues on the C2-ceramide induced contraction in esophageal smooth muscle cells isolated with collagenase. C2-ceramide produced contraction of smooth muscle cells in a dose dependent manner. (omitted)

  • PDF

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells

  • Lee, Dong Kyu;Min, Young Sil;Yoo, Seong Su;Shim, Hyun Sub;Park, Sun Young;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.546-552
    • /
    • 2018
  • A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.

소(牛) 식도구 평활근의 Adrenergic receptor 존재부위에 관한 연구 (Localization of adrenergic receptors in bovine esophageal groove)

  • 강동묵;조제열;박전홍;양일석
    • 대한수의학회지
    • /
    • 제33권4호
    • /
    • pp.617-622
    • /
    • 1993
  • The preliminary studies on the localization of adrenoceptors were performed on smooth muscle strips of bovine esophageal groove. The mechanical activity of the muscle strip was recorded isometrically in vitro.w In the bottom circular muscle strips. the excitatory ${\alpha}-adrenergic$ responses were not blocked by tetrodotoxin$(2.1{\times}10^{-6}M)$ and denervation which was carried by cold storage of strips for 48 hrs in Tyrode's solution at $5-6{^{\circ}C}$ without oxygen supply. These excitatory ${\alpha}-adrenergic$ responses were partially blocked by atropine. In the lip longitudinal muscle strips, the inhibitory${\beta}-adrenergic$ responses were not blocked by pretreatment of tetrodotoxin and atropine. The results suggest that ${\beta}-adrenergic$ receptors mediating relaxations are located on the postsynaptic smooth muscle cells, whereas ${\beta}-adrenergic$ receptors mediating contractions are located both in the smooth muscle cells and in the cholinergic neurones.

  • PDF

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Relaxation Effect of Synthetic Ceramide Analogues in Cat Esophageal Smooth Muscle Cells

  • Lee, Doo-Won;Park, Sun-Young;Ryu, Jung-Su;Kim, Sung-Hyo;Im, Chae-Uk;Choi, Su-Hang;Lee, Se-Eun;Ko, Sung-Kwon;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권4호
    • /
    • pp.137-142
    • /
    • 2008
  • Ceramide has emerged as a novel second messenger for intracellular signalling. It is produced from sphingomyelin and is involved in the control of cell differntiation, proliferation, and apoptosis. $C_2$-ceramide, short chain ceramide, plays a role in mediating contraction of cat esophageal smooth muscle cells. We examined the effect of synthesized ceramide analogues on the $C_2$-ceramide and ACh-induced contraction in esophageal smooth muscle cells isolated with collagenase. CY3523, CY3525, or CY3723 inhibited $C_2$-ceramide induced contraction, in a time dependent manne. Each analogue also inhibited the contraction in concentration dependent manners. CY 3523, CY 3525, and CY 3723 had no effect to the contraction induced by PMA. The inhibition with CY3523, CY3525 and CY3723 on the $C_2$-ceramide induced contraction was recovered by PMA. These analogues decreased the density of MAPK bands (p44/42 or p38) in the western blot. These results suggest that ceramide analogues can inhibit $C_2$-ceramide induced contraction via PKC and MAPK dependent pathway.

The mechanism of sphingosine-1-phosphate induced contraction in cat esophageal smooth muscle cells.

  • Choi, Tae-Sik;Lee, Tai-Sang;Woo, Jae-Gwang;Kim, Yong-Sung;Sohn, Uy-Dong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.77.3-78
    • /
    • 2003
  • We previously shown that sphingosylphosphorylcholine, a lysophosphatidic acid, produced contraction in isolated single cells of cat ilium. We investigated the mechanism of sphingosine-1-phosphate (S1P)-induced contraction of circular smooth muscle cells in cat esophagus. S1P produced esophageal contraction in a dose dependent manner. The maximal contraction (l0$\^$-7/ M) induced at 1min. Pertusis toxin (PTX) inhibited contraction induced by S1P, suggesting that the contraction is mediated to a PTX-sensitive G-protein. (omitted)

  • PDF

Activation of p38 MAPK Is Involved in Endothelin-1-stimulated COX-2 Expression in Cultured Feline Esophageal Smooth Muscle Cells

  • Song, Hyun Ju;Min, Young Sil;Shin, Chang Yell;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제22권1호
    • /
    • pp.44-50
    • /
    • 2006
  • We investigated the possible role of p38 MAPK and $ET_B$ receptors in ET-1 induction of cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in cultured feline esophageal smooth muscle cells (ESMC). Confluent layers of ESMC were stimulated with 10 nM ET-1 and expression of COX-1 and COX-2, involvement of receptors, and activation of p38 MAPK, were examined by Western blot analysis. Levels of $PGE_2$ induced by ET-1 were measured by Elisa. Using $ET_A$and $ET_B$ antagonists (BQ-123 and BQ-788, respectively), the contribution of the ET receptors to COX-1 and COX-2 expression induced by ET-1 was determined. Western blot analysis revealed that treatment of ESMC with ET-1 resulted in transient expression of COX-2 and activation of p38 MAPK. Activation of p38 MAPK was maximal after 1 h. SB202190, a p38 MAPK inhibitor, reduced expression of COX-2, but not COX-1. ET-1-induced release of $PGE_2$ was also blocked by SB202190. COX-2 expression was upregulated only via the $ET_B$ receptor, and COX-1 expression was not affected by either antagonist. Taken together, our data suggest that ET-1 causes p38 MAPK-dependent expression of COX-2 by interacting with $ET_B$ receptors on ESMC.

The Signaling Mechanism of Contraction Induced by ATP and UTP in Feline Esophageal Smooth Muscle Cells

  • Kwon, Tae Hoon;Jung, Hyunwoo;Cho, Eun Jeong;Jeong, Ji Hoon;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.616-623
    • /
    • 2015
  • P2 receptors are membrane-bound receptors for extracellular nucleotides such as ATP and UTP. P2 receptors have been classified as ligand-gated ion channels or P2X receptors and G protein-coupled P2Y receptors. Recently, purinergic signaling has begun to attract attention as a potential therapeutic target for a variety of diseases especially associated with gastroenterology. This study determined the ATP and UTP-induced receptor signaling mechanism in feline esophageal contraction. Contraction of dispersed feline esophageal smooth muscle cells was measured by scanning micrometry. Phosphorylation of $MLC_{20}$ was determined by western blot analysis. ATP and UTP elicited maximum esophageal contraction at 30 s and $10{\mu}M$ concentration. Contraction of dispersed cells treated with $10{\mu}M$ ATP was inhibited by nifedipine. However, contraction induced by $0.1{\mu}M$ ATP, $0.1{\mu}M$ UTP and $10{\mu}M$ UTP was decreased by U73122, chelerythrine, ML-9, PTX and $GDP{\beta}S$. Contraction induced by $0.1{\mu}M$ ATP and UTP was inhibited by $G{\alpha}i_3$ or $G{\alpha}q$ antibodies and by $PLC{\beta}_1$ or $PLC{\beta}_3$ antibodies. Phosphorylated $MLC_{20}$ was increased by ATP and UTP treatment. In conclusion, esophageal contraction induced by ATP and UTP was preferentially mediated by P2Y receptors coupled to $G{\alpha}i_3$ and $G{\alpha}q$ proteins, which activate $PLC{\beta}_1$ and $PLC{\beta}_3$. Subsequently, increased intracellular $Ca^{2+}$ and activated PKC triggered stimulation of MLC kinase and inhibition of MLC phosphatase. Finally, increased $pMLC_{20}$ generated esophageal contraction.

Sphingosine 1-Phosphate-induced Signal Transduction in Cat Esophagus Smooth Muscle Cells

  • Song, Hyun Ju;Choi, Tai Sik;Chung, Fa Yong;Park, Sun Young;Ryu, Jung Soo;Woo, Jae Gwang;Min, Young Sil;Shin, Chang Yell;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.42-51
    • /
    • 2006
  • We investigated the mechanism of contraction induced by S1P in esophageal smooth muscle cells. Western blot analysis demonstrated that $S1P_1$, $S1P_2$, $S1P_3$, and $S1P_5$ receptors existed in the cat esophagus. Only penetration of EDG-5 ($S1P_2$) antibody into permeabilized cells inhibited S1P-induced contraction. Pertussis toxin (PTX) also inhibited contraction, suggesting that it was mediated by $S1P_2$ receptors coupled to a PTXsensitive $G_i$ protein. Specific antibodies to $G_{i2}$, $G_q$ and $G_{\beta}$ inhibited contraction, implying that the S1P-induced contraction depends on PTX-insensitive $G_q$ and $G_{\beta}$ dimers as well as the PTX-sensitive $G_{i2}$. Contraction was not affected by the phospholipase $A_2$ inhibitor DEDA, or the PLD inhibitor ${\rho}$-chloromercuribenzoate, but it was abolished by the PLC inhibitor U73122. Incubation of permeabilized cells with $PLC{\beta}3$ antibody also inhibited contraction. Contraction involved the activation of a PKC pathway since it was affected by GF109203X and chelerythrine. Since $PKC{\varepsilon}$ antibody inhibited contraction, $PKC{\varepsilon}$ may be required. Preincubation of the muscle cells with the MEK inhibitor PD98059 blocked S1P-induced contraction, but the p38 MAP kinase inhibitor SB202190 did not. In addition, co-treatment of cells with GF 109203X and PD98059 did not have a synergistic effect, suggesting that these two kinases are involved in the same signaling pathway. Our data suggest that S1P-induced contraction in esophageal smooth muscle cells is mediated by $S1P_2$ receptors coupled to PTX-sensitive $G_{i2}$ proteins, and PTX-insensitive $G_q$ and $G_{\beta}$ proteins, and that the resulting activation of the $PLC{\beta}3$ and $PKC{\varepsilon}$ pathway leads to activation of a p44/p42 MAPK pathway.

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF