Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.053

Effect of Sphingosine-1-Phosphate on Intracellular Free Ca2+ in Cat Esophageal Smooth Muscle Cells  

Lee, Dong Kyu (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Min, Young Sil (Department of Pharmaceutical Engineering, College of Convergence Science and Technology, Jung Won University)
Yoo, Seong Su (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Shim, Hyun Sub (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.26, no.6, 2018 , pp. 546-552 More about this Journal
Abstract
A comprehensive collection of proteins senses local changes in intracellular $Ca^{2+}$ concentrations ($[Ca^{2+}]_i$) and transduces these signals into responses to agonists. In the present study, we examined the effect of sphingosine-1-phosphate (S1P) on modulation of intracellular $Ca^{2+}$ concentrations in cat esophageal smooth muscle cells. To measure $[Ca^{2+}]_i$ levels in cat esophageal smooth muscle cells, we used a fluorescence microscopy with the Fura-2 loading method. S1P produced a concentration-dependent increase in $[Ca^{2+}]_i$ in the cells. Pretreatment with EGTA, an extracellular $Ca^{2+}$ chelator, decreased the S1P-induced increase in $[Ca^{2+}]_i$, and an L-type $Ca^{2+}$-channel blocker, nimodipine, decreased the effect of S1P. This indicates that $Ca^{2+}$ influx may be required for muscle contraction by S1P. When stimulated with thapsigargin, an intracellular calcium chelator, or 2-Aminoethoxydiphenyl borate (2-APB), an $InsP_3$ receptor blocker, the S1P-evoked increase in $[Ca^{2+}]_i$ was significantly decreased. Treatment with pertussis toxin (PTX), an inhibitor of $G_i$-protein, suppressed the increase in $[Ca^{2+}]_i$ evoked by S1P. These results suggest that the S1P-induced increase in $[Ca^{2+}]_i$ in cat esophageal smooth muscle cells occurs upon the activation of phospholipase C and subsequent release of $Ca^{2+}$ from the $InsP_3$-sensitive $Ca^{2+}$ pool in the sarcoplasmic reticulum. These results suggest that S1P utilized extracellular $Ca^{2+}$ via the L type $Ca^{2+}$ channel, which was dependent on activation of the $S1P_4$ receptor coupled to PTX-sensitive $G_i$ protein, via phospholipase C-mediated $Ca^{2+}$ release from the $InsP_3$-sensitive $Ca^{2+}$ pool in cat esophageal smooth muscle cells.
Keywords
Sphingosine-1-phosphate; Calcium; Fura-2; Esophageal cells; 2-Aminoethoxydiphenyl borate; Nimodipine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Matula, K., Collie-Duguid, E., Murray, G., Parikh, K., Grabsch, H., Tan, P., Lalwani, S., Garau, R., Ong, Y., Bain, G., Smith, A. D., Urquhart, G., Bielawski, J., Finnegan, M. and Petty, R. (2015) Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer 15, 762.   DOI
2 Milara, J., Mata, M., Mauricio, M. D., Donet, E., Morcillo, E. J. and Cortijo, J. (2009) Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. Eur. J. Pharmacol. 609, 132-139.   DOI
3 Nema, R., Vishwakarma, S., Agarwal, R., Panday, R. K. and Kumar, A. (2016) Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther. 9, 3269-3280.
4 Ng, M. L., Wadham, C. and Sukocheva, O. A. (2017) The role of sphingolipid signalling in diabetesassociated pathologies (Review). Int. J. Mol. Med. 39, 243-252.   DOI
5 Nishimura, N., Endo, S., Ueno, S., Ueno, N., Tatetsu, H., Hirata, S., Hata, H., Komohara, Y., Takeya, M., Mitsuya, H. and Okuno, Y. (2017) A xenograft model reveals that PU.1 functions as a tumor suppressor for multiple myeloma in vivo. Biochem. Biophys. Res. Commun. 486, 916-922.   DOI
6 Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 34, 66-75.   DOI
7 Puli, M. R., Rajsheel, P., Aswani, V., Agurla, S., Kuchitsu, K. and Raghavendra, A. S. (2016) Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. Planta 244, 831-841.   DOI
8 Qiu, W. and Steinberg, S. F. (2016) Phos-tag SDS-PAGE resolves agonist-and isoform-specific activation patterns for PKD2 and PKD3 in cardiomyocytes and cardiac fibroblasts. J. Mol. Cell. Cardiol. 99, 14-22.   DOI
9 Ruger, K., Ottenlinger, F., Schroder, M., Zivkovic, A., Stark, H., Pfeilschifter, J. M. and Radeke, H. H. (2014) Modulation of IL-33/ST2-TIR and TLR signalling pathway by fingolimod and analogues in immune cells. Scand. J. Immunol. 80, 398-407.   DOI
10 Selli, C. and Tosun, M. (2016) Effects of cyclopiazonic acid and dexamethasone on serotonin-induced calcium responses in vascular smooth muscle cells. J. Physiol. Biochem. 72, 245-253.   DOI
11 Serafimidis, I., Rodriguez-Aznar, E., Lesche, M., Yoshioka, K., Takuwa, Y., Dahl, A., Pan, D. and Gavalas, A. (2017) Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling. PLoS Biol. 15, e2000949.   DOI
12 Shaifta, Y., Snetkov, V. A., Prieto-Lloret, J., Knock, G. A., Smirnov, S. V., Aaronson, P. I. and Ward, J. P. (2015) Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species. Cardiovasc. Res. 106, 121-130.   DOI
13 Simo-Cheyou, E. R., Tan, J. J., Grygorczyk, R. and Srivastava, A. K. (2017) STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J. Cell. Physiol. 232, 3496-3509.   DOI
14 Sohn, U. D., Hong, Y. W., Choi, H. C., Ha, J. H., Lee, K. Y., Kim, W. J., Biancani, P., Jeong, J. H. and Huh, I. H. (2000) Increase of [Ca(2+)] i and release of arachidonic acid via activation of M2 receptor coupled to Gi and rho proteins in oesophageal muscle. Cell Signal. 12, 215-222.   DOI
15 Wetter, J. A., Revankar, C. and Hanson, B. J. (2009) Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J. Biomol. Screen. 14, 1134-1141.   DOI
16 Sysol, J. R., Natarajan, V. and Machado, R. F. (2016) PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 310, C983-C992.   DOI
17 Tafelmeier, M., Fischer, A., Orso, E., Konovalova, T., Bottcher, A., Liebisch, G., Matysik, S. and Schmitz, G. (2017) Mildly oxidized HDL decrease agonist-induced platelet aggregation and release of procoagulant platelet extracellular vesicles. J. Steroid. Biochem. Mol. Biol. 169, 176-188.   DOI
18 Terada, S., Muraoka, I. and Tabata, I. (2003) Changes in [Ca2+]i induced by several glucose transport-enhancing stimuli in rat epitrochlearis muscle. J. Appl. Physiol. 94, 1813-1820.   DOI
19 Vestri, A., Pierucci, F., Frati, A., Monaco, L. and Meacci, E. (2017) Sphingosine 1-phosphate receptors: do they have a therapeutic potential in cardiac fibrosis? Front. Pharmacol. 8, 296.   DOI
20 Vyas, V., Ashby, C. R., Jr., Olgun, N. S., Sundaram, S., Salami, O., Munnangi, S., Pekson, R., Mahajan, P. and Reznik, S. E. (2015) Inhibition of sphingosine kinase prevents lipopolysaccharide-induced preterm birth and suppresses proinflammatory responses in a murine model. Am. J. Pathol. 185, 862-869.   DOI
21 Yamazaki, Y., Kon, J., Sato, K., Tomura, H., Sato, M., Yoneya, T., Okazaki, H., Okajima, F. and Ohta, H. (2000) Edg-6 as a putative sphingosine 1-phosphate receptor coupling to $Ca^{2+}$ signaling pathway. Biochem. Biophys. Res. Commun. 268, 583-589.   DOI
22 Bates, R. C., Fees, C. P., Holland, W. L., Winger, C. C., Batbayar, K., Ancar, R., Bergren, T., Petcoff, D. and Stith, B. J. (2014) Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev. Biol. 386, 165-180.   DOI
23 Yates, S. L., Fluhler, E. N. and Lippiello, P. M. (1992) Advances in the use of the fluorescent probe fura-2 for the estimation of intrasynaptosomal calcium. J. Neurosci. Res. 32, 255-260.   DOI
24 Yu, X., Wang, X., Huang, X., Buchenauer, H., Han, Q., Guo, J., Zhao, J., Qu, Z., Huang, L. and Kang, Z. (2011) Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Mol. Biol. Rep. 38, 3447-3454.   DOI
25 Zhai, L., Wu, R., Han, W., Zhang, Y. and Zhu, D. (2017) miR-127 enhances myogenic cell differentiation by targeting S1PR3. Cell Death Dis. 8, e2707.   DOI
26 Adamson, R. H., Sarai, R. K., Clark, J. F., Altangerel, A., Thirkill, T. L. and Curry, F. E. (2012) Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. Am. J. Physiol. Heart Circ. Physiol. 302, H1929-H1935.   DOI
27 Ahmed, D., de Verdier, P. J., Ryk, C., Lunqe, O., Stal, P. and Flygare, J. (2015) FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol. Res. Perspect. 3, e00171.   DOI
28 Aoyama, Y., Sobue, S., Mizutani, N., Inoue, C., Kawamoto, Y., Nishizawa, Y., Ichihara, M., Kyogashima, M., Suzuki, M., Nozawa, Y. and Murate, T. (2017) Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR. Biochem. Biophys. Res. Commun. 486, 551-557.   DOI
29 Archbold, J. K., Martin, J. L. and Sweet, M. J. (2014) Towards selective lysophospholipid GPCR modulators. Trends Pharmacol. Sci. 35, 219-226.   DOI
30 Badawy, S. M. M., Okada, T., Kajimoto, T., Ijuin, T. and Nakamura, S. I. (2017) DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci. Rep. 7, 16552.   DOI
31 Becker, S., Kinny-Koster, B., Bartels, M., Scholz, M., Seehofer, D., Berg, T., Engelmann, C., Thiery, J., Ceglarek, U. and Kaiser, T. (2017) Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. PLoS ONE 12, e0174424.   DOI
32 Biancani, P., Hillemeier, C., Bitar, K. N. and Makhlouf, G. M. (1987) Contraction mediated by Ca2+ influx in esophageal muscle and by Ca2+ release in the LES. Am. J. Physiol. 253, G760-G766.
33 Candalija, A., Cubi, R., Ortega, A., Aguilera, J. and Gil, C. (2014) Trk receptors need neutral sphingomyelinase activity to promote cell viability. FEBS Lett. 588, 167-174.   DOI
34 Choi, S. K., Ahn, D. S. and Lee, Y. H. (2009) Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc. Res. 82, 324-332.
35 Fuhrmann, I. K., Steinhagen, J., Ruther, W. and Schumacher, U. (2015) Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem. 117, 243-254.   DOI
36 Cui, K., Ruan, Y., Wang, T., Rao, K., Chen, Z., Wang, S. and Liu, J. (2017) FTY720 supplementation partially improves erectile dysfunction in rats with streptozotocin-induced type 1 diabetes through inhibition of endothelial dysfunction and corporal fibrosis. J. Sex. Med. 14, 323-335.   DOI
37 Delgado, A. and Martinez-Cartro, M. (2016) Therapeutic potential of the modulation of sphingosine-1-phosphate receptors. Curr. Med. Chem. 23, 242-264.   DOI
38 Dyckman, A. J. (2017) Modulators of sphingosine-1-phosphate pathway biology: recent advances of Sphingosine-1-phosphate Receptor 1 (S1P1) agonists and future perspectives. J. Med. Chem. 60, 5267-5289.   DOI
39 Feuerborn, R., Becker, S., Poti, F., Nagel, P., Brodde, M., Schmidt, H., Christoffersen, C., Ceglarek, U., Burkhardt, R. and Nofer, J.R. (2017) High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. Atherosclerosis 257, 29-37.   DOI
40 Filipenko, I., Schwalm, S., Reali, L., Pfeilschifter, J., Fabbro, D., Huwiler, A. and Zangemeister-Wittke, U. (2016) Upregulation of the S1P3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE2 and EP2/EP4 activation. Biochim. Biophys. Acta 1861, 1840-1851.   DOI
41 Germinario, E., Bondi, M., Cencetti, F., Donati, C., Nocella, M., Colombini, B., Betto, R., Bruni, P., Bagni, M. A. and Danieli-Betto, D. (2016) S1P3 receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. J. Appl. Physiol. 120, 1288-1300.   DOI
42 Li, Q., Chen, B., Zeng, C., Fan, A., Yuan, Y., Guo, X., Huang, X. and Huang, Q. (2015) Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells. Exp. Physiol. 100, 95-107.   DOI
43 Hohenhaus, D. M., Schaale, K., Le Cao, K. A., Seow, V., Iyer, A., Fairlie, D. P. and Sweet, M. J. (2013) An mRNA atlas of G protein-coupled receptor expression during primary human monocyte/macrophage differentiation and lipopolysaccharide-mediated activation identifies targetable candidate regulators of inflammation. Immunobiology 218, 1345-1353.   DOI
44 Kanemura, N., Shibata, R., Ohashi, K., Ogawa, H., Hiramatsu-Ito, M., Enomoto, T., Yuasa, D., Ito, M., Hayakawa, S., Otaka, N., Murohara, T. and Ouchi, N. (2017) C1q/TNF-related protein 1 prevents neointimal formation after arterial injury. Atherosclerosis 257, 138-145.   DOI
45 Li, N. and Zhang, F. (2016) Implication of sphingosin-1-phosphate in cardiovascular regulation. Front. Biosci. (Landmark Ed.) 21, 1296-1313.   DOI
46 Li, S., Chen, J., Fang, X. and Xia, X. (2017) Sphingosine-1-phosphate activates the AKT pathway to inhibit chemotherapy induced human granulosa cell apoptosis. Gynecol. Endocrinol. 33, 476-479.   DOI
47 Liu, P., Hopfner, R. L., Xu, Y. J. and Gopalakrishnan, V. (1999) Vasopressin-evoked [Ca2+]i responses in neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol. 34, 540-546.   DOI
48 Gomez-Munoz, A., Gangoiti, P., Granado, M. H., Arana, L. and Ouro, A. (2010) Ceramide-1-phosphate in cell survival and inflammatory signaling. Adv. Exp. Med. Biol. 688, 118-130.