• Title/Summary/Keyword: Error separation

Search Result 212, Processing Time 0.055 seconds

A HYBRID METHOD FOR REGULARIZED STRUCTURED LINEAR TOTAL LEAST NORM

  • KWON SUNJOO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.621-637
    • /
    • 2005
  • A hybrid method solving regularized structured linear total least norm (RSTLN) problems, which have highly ill-conditioned coefficient matrix with special structures, is suggested and analyzed. This scheme combining RSTLN algorithm and separation by parts guarantees the convergence of parameters and has an advantages in reducing the residual norm and relative error of solutions. Computational tests for problems arisen in signal processing and image formation process confirm that the presenting method is effective for more accurate solutions to (R)STLN problem than the (R)STLN algorithm.

Stability Proof of NFL-ROO/SMC : Part 2 (NFL-ROO/SMC의 안정도 증명 : Part 2)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.976-978
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer/sliding mode controller (NFL-ROO/SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

The Iron loss Estimation of IPMSM According to Current Phase Angle

  • Cho, Gyu-Won;Kim, Dong-Yeong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1345-1351
    • /
    • 2013
  • Variable iron loss as function of current phase angle of Interior Permanent Magnet Synchronous Motor(IPMSM) was calculated through Curve Fitting Method(CFM). Also, a magnetic flux density distribution of iron core according to current phase angle was analyzed, and an iron loss calculation was performed including harmonic distortion. The experiment was performed by production of non-magnetizing model for the separation of mechanical loss, and the iron loss was calculated by the measurement of input using power analyzer and output power using dynamometer. Some error was generated between experimental results and calculation value, but an iron loss diminution according to current phase angle followed a same pattern. So, errors were generated by measurement, vibration, noise, harmonic distortion loss, etc.

Research on Improvement of Performance of Anemometer Using PTC Thermistor (PTC 서미스터를 이용한 유속계의 성능향상에 관한 연구)

  • Yoon, Joon-Yong;Cho, Nahm-Gyoo;Kim, Jin-Rae;Sung, Nak-Won;Kim, Hwang-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.15-21
    • /
    • 2000
  • An anemometer employing the bulk PTC thermistor as the sensing element is investigated in this study. The numerical and experimental works are carried out to improve the sensitivity problem of the element by focusing fluid dynamics point of view. The typical shape of the sensing element has been used as a rectangular type, but this shape has a sensitivity problem because of flow separations on the sharp edge when the flow direction is different from that of the sensing element. In order to reduce the reading error, the installer has to be very careful about the flow direction. The reading error fluctuation by time as well as the sensitivity problem can be improved considerably through this study. It can be concluded that the small change of the sensor shape can improve the performance of the flow sensor.

  • PDF

Comparison of Heat Transfer Between 1-D and 2-D Analyses for a Rectangular Annular Fin (사각 환형 핀에 대한 1차원과 2차원 해석의 열전달 비교)

  • Kang, Hyung-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1177-1181
    • /
    • 2009
  • Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.

  • PDF

Control of superoritioal fluid extraotion process using fuzzy logio (모호논리를 이용한 초임게유체추출공정의 제어)

  • 유두선;이광순;남성우;김정한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.246-251
    • /
    • 1990
  • A fuzzy control scheme has been proposed for a supercritical extraction process which has attracted much attention recently as a new separation technology. Based on the manual operation experience, three control pairs between manipulated and output variables are selected first and then seven membership functions are defined for control error and time rate of the error, respectively for each control pair, resulting in forty nine Fuzzy control rules. In addition to these, the membership functions are defined in two steps (coarse and fine) to enhance control performance. Fuzzy inference is performed using MAX-MTN composition rule and defuzzified control output is calculated based on center of gravity method. The prosed Fuzzy control scheme has been assessed through numerical simulation. As a result, the proposed scheme shows good control performance comparable with that by INA(inverse nyquist array) which usually requires complicated design procedure.

  • PDF

Respirometry for COD Fractionation of Wastewater (미생물 호흡률 분석에 의한 하수의 유기물 분류)

  • Choi, Younggyun;Kim, Gyudong;Kim, Heejun;Kim, Yunjung;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.503-509
    • /
    • 2003
  • COD fractionation of primary settled municipal wastewater was conducted by respirometry. RBCOD (Readily Biodegradable COD) fraction was analyzed to be 21% of influent TCOD. However, SCOD fraction, analyzed by physical separation using $0.45{\mu}m$ membrane filter, was about 31% of TCOD. Therefore, 10% of soluble inert COD was comprised in TCOD. It means that kinetic analysis of activated sludge system was impossible because serious error would be occurred if SCOD was used as a biodegradable soluble component instead of RBCOD estimated from respirometry. In this study, RBCOD fraction of raw wastewater could be analyzed by respirometry within the error range of 57%. In addition, SBCOD (Slowly Biodegradable COD) content could be determined by kinetic simulation of the experimental results. SBCOD showed about 2-fold higher fraction (38% of TCOD) as compared with RBCOD.

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

A Numerically Controlled Oscillator for Multi-Carrier Channel Separation in Cdma2000 3X (Cdma2000 3X 다중 반송파 채널 분리용 수치 제어 발진기)

  • Lim In-Gi;Kim Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1271-1277
    • /
    • 2004
  • We propose a foe phase tuner and a rounding processor for a numerically controlled oscillator (NCO), yielding a reduced phase error in generating a digital sine waveform. By using the fine Phase tuner Presented in this paper, when the ratio of the desired sine wave frequency to the clock frequency is expressed as a fraction, an accurate adjustment in representing the fractional value can be achieved with simple hardware. In addition, the proposed rounding processor reduces the effects of phase truncation on the output spectrum. Logic simulation results of the NCO for multi-carrier channel separation in cdma2000 3X multi-carrier receive system using these techniques show that the noise spectrum and mean square error (MSE) are reduced by 8.68 dB and 5.5 dB, respectively compared to those of truncation method and 2.38 dB and 0.83 dB, respectively, compared to those of Paul's scheme.

The Quality Assurance Technique of Resistance Spot Welding Pieces using Neuro-Fuzzy Algorithm (뉴로-퍼지 알고리즘을 이용한 점용접재의 강도추론 기술)

  • Kim, Joo-Seok;Choo, Youn-Joon;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.141-151
    • /
    • 1999
  • The resistance Spot Welding is widely used in the field of assembling the plates. However we don't still have any satisfactory solution, which is non-destructive quality evaluation in real-time or on-line, against it. Moreover, even though the rate of welding under the condition of expulsion has been high until now, quality control of welding against expulsion hasn't still been established. In this paper, it was proposed on the quality assurance technique of resistance spot welding pieces using Neuro-Fuzzy algorithm. Four parameters from electrode separation signal in the case of non-expulsion, and dynamic resistance patterns in the case of expulsion are selected as fuzzy input parameters. The parameters consist of Fuzzy Inference System are determined through Neuro-Learning algorithm. And then, fuzzy Inference System is constructed. It was confirmed that the fuzzy inference values of strength have within ${\pm}$4% error specimen in comparison with real strength for the total strength range, and the specimen percent having within ${\pm}$1% error was 88.8%. According to KS(Korean Industrial Standard), tensile-shear strength limit for electric coated of zinc is 400kgf/mm2. Judging to the quality of welding is good or bad, according to this criterion and the results of inference, the probability of misjudgement that good quality is valuated into poor one was 0.43%, on contrary it was 2.59%. Finally, the proposed Neuro-Fuzzy Inference System can infer the tensile-shear strength of resistance spot welding pieces with high performance for all cases-non-expulsion and expulsion. And On-Line Welding Quality Inspection System will be realized sooner or later.

  • PDF