• Title/Summary/Keyword: Error probability

Search Result 1,369, Processing Time 0.028 seconds

PERFORMANCE EVALUATION VIA MONTE CARLO IMPORTANCE SAMPLING IN SINGLE USER DIGITAL COMMUNICATION SYSTEMS

  • Oh Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.157-166
    • /
    • 2006
  • This research proposes an efficient Monte Carlo algorithm for computing error probability in high performance digital communication st stems. It characterizes special features of the problem and suggests an importance sampling algorithm specially designed to handle the problem. It uses a shifted exponential density as the importance sampling density, and shows an adaptive way of choosing the rate and the origin of the shifted exponential density. Instead of equal allocation, an intelligent allocation of the samples is proposed so that more samples are allocated to more important part of the error probability. The algorithm uses the nested feature of the error space and avoids redundancy in estimating the probability. The algorithm is applied to an example data set and shows a great improvement in accuracy of the error probability estimation.

A Validity Verification of Human Error Probability using a Fuzzy Model (퍼지모델을 이용한 인적오류확률의 타당성 검증)

  • Jang, Tong-Il;Lee, Yong-Hee;Lim, Hyeon-Kyo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.137-142
    • /
    • 2006
  • Quantification of error possibility, in an HRA process, should be performed so that the result of the qualitative analysis can be utilized in other areas in conjunction with overall safety estimation results. And also, the quantification is an essential process to analyze the error possibility in detail and to obtain countermeasures for the errors through screening procedures. In previous studies for the quantification of error possibility, nominal values were assigned by the experts' judgements and utilized as corresponding probabilities. The values assigned by experts' experiences and judgements, however, require verifications on their reliability. In this study, the validity of new error possibility values in new MCR design was verified by using the Onisawa's model which utilizes fuzzy linguistic values to estimate human error probabilities. With the model of error probabilities are represented as analyst's estimations and natural language expression instead of numerical values. As results, the experts' estimation values about error probabilities are well agreed to the existing error probability estimation model. Thus, it was concluded that the occurrence probabilities of errors derived from the human error analysis process can be assessed by nominal values suggested in the previous studies. It is also expected that our analysis method can supplement the conventional HRA method because the nominal values are based on the consideration of various influencing factors such as PSFs.

A Study on the Performance Analysis of 4-ary Scaling Wavelet Shift Keying (4-ary 스케일링 웨이브릿 편이 변조 시스템의 성능 분석에 관한 연구)

  • Jeong, Tae-Il;Ryu, Tae-Kyung;Kim, Jong-Nam;Moon, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1155-1163
    • /
    • 2010
  • An algorithm of the conventional wavelet shift keying is carried out that the scaling function and wavelet are encoded to 1(mark) and 0(space) for the input binary data, respectively. Two bit modulation technique which uses four carrier frequencies is existed. Four carrier frequencies are defined as scaling function, inversed scaling function, wavelet, and inversed wavelet, which are encoded to 10, 11, 00 and 01, respectively. In this paper, we defined 4-ary SWSK (4-ary scaling wavelet shift keying) which is two bit modulation, and it is derived to the probability of bit error and symbol error of the defined system from QPSK. In order to analyze to the performance of 4-ary SWSK, we are obtained in terms of the probability of bit error and symbol error for QPSK (quadrature phase shift keying), MFSK(M-ary frequency shift keying) and proposed method. As a results of simulation, we confirmed that the proposed method was superior to the performance in terms of the probability of bit error and symbol error.

Error Rate Performance of FH/MFSK Signal with Thermal Noise in the Partial Band Jamming Environments (부분대역 재밍 환경하에서 열잡음을 고려한 FH/MFSK 신호의 오솔특성)

  • 강찬석;안중수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Performance analysis is very important to transmit the high quality information and to construct the optimal system for the minimze the noise from the channel of spread spectrum system. In this paper the error rate performance is analyzed with computer simulation in noncoherent frequency hopping M-qry frequency shift keying(FH/MFSk) systems with regard to thermal noise under the partial band jamming environments. AS a result, in case the thermal noise is disregarded, bit error probability of system in jamming fraction ρ and Eb/Nj(bit energy to jamming power density) is reduced with the increase of K and in worst case 32FSK system is better than 2FSK system by 3.23dB with the variatio of Eb/Nj. In case thermal noise is considered, bit error probability of system by 3.23dB with the variation of Eb/Nj. In case thermal noise is considered, bit error probability of system are reduced with the increase of K and Eb/No(bit energy to thermal noise density). Bit error probability in connection with worst case ρ is not largely influenced form over the 14dB to K=1 and 8dB to K=5 accordingly thermal noise disregarding. These results may be useful for avoiding the common vulnerabilities when the spread spectrum system is designed.

  • PDF

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

Study of New Approach of Performance Analysis for OADF Relay Systems over Rayleigh Fading channels (레일리 페이딩 채널에서의 OADF 릴레이 시스템에 대한 새로운 성능분석 기법에 관한 연구)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • In this letter, we have derived another exact performance analysis for the OADF(opportunistic adaptive decode-and-forward) relay systems over Rayleigh fading channels. Based on error-events at relay nodes, the received instantaneous SNR(signal-to-noise ratio) is presented and its PDF(probability density function) is expressed as a more tractable form in which the number of summations and the length of each summation are specified. Then, exact average error rate, outage probability, and average channel capacity are obtained as general forms. Simulation results are finally presented to validate that the proposed analytical expressions can be a unified frame work covering all Rayleigh fading channel conditions. Furthermore, it is confirmed that OADF schemes can outperform the other schemes on the average error rate, outage probability, and average channel capacity.

QUANTIZATION FOR A PROBABILITY DISTRIBUTION GENERATED BY AN INFINITE ITERATED FUNCTION SYSTEM

  • Roychowdhury, Lakshmi;Roychowdhury, Mrinal Kanti
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.765-800
    • /
    • 2022
  • Quantization for probability distributions concerns the best approximation of a d-dimensional probability distribution P by a discrete probability with a given number n of supporting points. In this paper, we have considered a probability measure generated by an infinite iterated function system associated with a probability vector on ℝ. For such a probability measure P, an induction formula to determine the optimal sets of n-means and the nth quantization error for every natural number n is given. In addition, using the induction formula we give some results and observations about the optimal sets of n-means for all n ≥ 2.

Estimation of Car Driver Error Probabilities Through Driver Questionnaire (운전자 설문을 통한 자동차 운전자의 실수 확률 추정)

  • Lee, Jae-In;Lim, Chang-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.61-66
    • /
    • 2007
  • Car crashes are the leading cause of death for persons of every age. Specially, human-related factor has been known to be the primary causal factor of such crashes than vehicle-and environmental-related factors. There are various studies to analyze driver's behavior and characteristics in driving for reducing the car crashes in many areas of car engineering, psychology, human factor, etc. However, there are almost no studies which analyze mainly the human errors in driving and estimate their probabilities in terms of human reliability analysis. This study estimates the probability of human error in driving, i.e. driver error probability. First, fifty driver errors are investigated through DBQ (Driver Behavior Questionnaire) revision and the error likelihoods in driving are collected which are judged by skillful drivers using revised DBQ. Next, these likelihoods are converted into driver error probabilities using the results that verbal probabilistic expressions are changed into quantitative probabilities. Using these probabilities we can improve the warning effects on drivers by indicating their driving error likelihoods quantitatively. We can also expect the reduction effects of car accident through controlling especially dangerous error groups which have higher probabilities. Like these, the results of this study can be used as the primary materials of safety education on drivers.

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF