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PERFORMANCE EVALUATION VIA MONTE CARLO
IMPORTANCE SAMPLING IN SINGLE USER DIGITAL
COMMUNICATION SYSTEMS'

MAN-SUK On!

ABSTRACT

This research proposes an efficient Monte Carlo algorithm for computing
error probability in high performance digital communication systems. It
characterizes special features of the problem and suggests an importance
sampling algorithm specially designed to handle the problem. It uses a
shifted exponential density as the importance sampling density, and shows
an adaptive way of choosing the rate and the origin of the shifted exponential
density. Instead of equal allocation, an intelligent allocation of tlie samples
is proposed so that more samples are allocated to more importent part of
the error probability. The algorithm uses the nested feature of the error
space and avoids redundancy in estimating the probability. The algorithm
is applied to an example data set and shows a great improvement i accuracy
of the error probability estimation.

AMS 2000 subject classifications. Primary 65C05; Secondary 65D30.
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1. INTRODUCTION

Performance evaluation in high performance digital communication system is
closely related to estimation of the probability of bit error which can be converted
into estimation of the integral

I= /E f(@)dz,
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where the area E is the error space in which communication error occurs and f
is the probability density function of a random noise in the system (Stadler and
Roy, 1993).

If we assume a Gaussian distribution for the noise in the system, the prob-
ability of bit error is the probability of tail area under a normal distribution.
Specifically, in high performance digital communication systems the error space
E is an extreme tail area under the standard normal distribution and the error
probability is extremely small, often less than 10~4. In addition, when the total
of K binary sequences are sent, there are 2K possible combinations of K binary
data and hence we need to compute the error probability for each of the 2K cases.

Due to the above special characteristics of the error probability in digital com-
munication system, general purpose numerical methods can be very inefficient in
estimating the error probability and hence development of an efficient algorithm
taking account of the above features is desired. In this paper, we attack the
problem by using a Monte Carlo method, specifically an importance sampling
scheme.

In Section 2, we present the single user digital communication system and
describe the special features of the problem of estimating the error probability.
In Section 3, we propose an efficient importance sampling algorithm taking into
account of the features of the problem. We apply the proposed algorithm in an
example data set and compare the results with those from Stadler and Roy (1993)
in Section 4. Summary and discussion are given in Section 5.

2. THE SINGLE USER DIGITAL COMMUNICATION SYSTEM

Consider the single user digital communication system model shown in Figure
2.1. The user symbols or data is converted into a binary sequence (dy = +A)
and sent to the channel. The channel is a linear filter which is a MA(p + 1)
process. A Gaussian noise wy is added to the output from the channel and a
linear combination of the noise and the output from the channel is passed through
the equalizer which is a MA(g + 1) process, and the output from the equalizer
yx is given to the receiver. The data received by the receiver is continuous due
to the Gaussian noise, hence is converted into a binary sequence dy depending
on whether the continuous data is above a threshold xp or not. The converted
binary data is a final output from the digital communication system. Here we
assume that the binary sequence dj are iid and P(dy = A) = P(dy = —A),
and that the Gaussian noise wy are #d and follow N(0,02) distribution. The
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coefficient by, . .., b, of the MA(p+ 1) channel and the coefficient h», ..., hq of the
MA(q + 1) equalizer can be estimated in a training stage and hence are assumed
to be known constants.

noise
H{pHi) } )

FIGURE 2.1 The single user digital communication system.

Given {bo,...,bp}, {ho,---,hq}, {d1,...,dx}, zr and yi can be represented

as
p
Ty = Z bidp_; +wg = btdk + wy,
i=0
q
Y = Zhiwk—i = h'x,
1=0
where

(bo, ..., bp), dp = (di, ..., dik—p),

(ho,...,hq), Xp = (a:k,...,:ck_q),

b
h

I

and wy ~ N(0,02). If welet ¢; =3 _ kb, 7=0,...,pand let
J 1=0 '119;

q

~ t

W = h'wy = Zhiwk—ia Wi = (W, - -, Wk—gq)5
=0

then yr, = ctdy, + . Here 10y, . .., are not independent but are correlated.
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For the k' signal d, the error probability is P(error) = 0.5P(d), = —Aldy, =
A) + 0.5P(d; = Aldy = —A). By symmetry P(dy = —Aldy, = A) = P(dy =
Aldy = —A). Hence, it suffices to consider the case that dy = A is sent. Specifi-
cally, the problem of interest is computation of

-

P(dy = —Aldr =A) = Py, <0ldp, = A) = P(Ctdk + hwy < 0ldx, = A)
= P(hth < —Ctdkldk = A),

where xg = 0 is used as the threshold.

Given h, ¢, and dj, = (di, ..., dik—p), htwy, is a linear combination of normal
variables and follows a normal distribution. Hence the problem converts to a
generic problem of computing P(Z > i), where Z is a standard normal variable
and v, = (c’di + px)/o? and pg, o2 are respectively the mean and variance of
h’wy,. Since there are m = 2P possible cases of dy, = (dg, . . - ,dk—p), given a value
of di, which are assumed to be equally probable, P(Z > ) =m™' 3" P(Z >
a;), where a; corresponds to the i** possible value of ;. Therefore, it requires
m = 2P computations of standard normal probabilities.

There are several special features of the problem. First, the value a; are very
large in high performance digital communication systems so that p; = P(Z > a;)’s
are extreme tail probabilities of the standard normal distribution and are very
small. The cumulative normal probabilities provided by typical statistical soft-
ware packages can provide inaccurate results. Therefore, an efficient numeri-
cal method specially designed for our problem is required. It has been shown
that Monte Carlo methods, especially importance sampling methods, are effec-
tive methods for accurate estimation of the probabilities and significant effort
has been given to improve the efficiency of the importance sampling methods
(Shanmugam and Balaban, 1980; Jeruchim, 1984; Davis, 1986; Beaulieu, 1990a,
b; Schlebusch, 1990; Stadler and Roy, 1993). However, the complexity of choos-
ing an appropriate sample generating density, called the importance sampling
density, has prohibited widespread use of the importance sampling methods.

Second, without loss of generality we may let a1 < ag < -+ < am,, hence
pi = P(Z > ai) = P(Z > ai+1) +P(a,~+1 >7Z > ai) = Pi+1 +P(ai+1 >7Z> ai).
Thus, if we ignore the above nested feature of p;’s and compute the p;’s separately
then it would yield redundant estimation of p;, j = i+1,...,m for each ¢, yielding
inefficiency of the algorithm.

Third, due to the order in a;’s, it holds that p; > ps > --- > p,,,. Since the
standard normal density has a fast convergence rate and a,’s are all very large, the
first few p;’s are much larger, usually in the order of magnitudes, than the others



PERFORMANCE EVALUATION VIA MONTE CARLO 161

so that the total error probability is dominated by the first few p;’s. Therefore,
instead of dealing with all p;’s with the same effort it would be desirable to use
most of the computing cost to first few p;’s and use relatively sinall computing
cost to the rest p;’s.

3. AN IMPORTANCE SAMPLING ALGORITHM

In this section we propose an efficient importance sampling al:zorithm, taking
account of each of the special features described in Section 2. First, the pdf
of the standard normal distribution is monotone decreasing in the tail region
Z € (a,00) with rate e=952* Thus, an importance sampling density which is
monotone decreasing in the given region would be desirable. Also, it is desirable
that the decreasing rate of the importance sampling density is as close as possible
to the rate of the standard normal density in the given region. Note that the
decreasing rate of the standard normal pdf in (a,o0) is so fast that the region
very close to a, say (a,a + €) for very small ¢ > 0, is dominant in computing
the probability, and this phenomenon is more pronounced for a larger a. Thus,
for a large a it would be sufficient to consider the decreasing rate near a when
choosing the importance sampling density. In addition, the tails of the importance
sampling density should be heavier than those of ¢(z), the standard normal pdf,
in the given region to avoid a large variance in importance sampling estimates
(Oh and Berger, 1992).

Keeping these considerations in mind, we suggest to use the pdf of a shifted
exponential distribution, hg(z) = e 99 (a < z < o), as an importance
sampling density. The rate 6 should be chosen so that hg(z) mimics ¢(z), the
standard normal pdf, in Z € (a,00) as much as possible. For this, we note
#(a)/d(a+e) = e®+¢* and hg(a)/hg(a+e) = €%. If we let § = a then ¢(a)/d(a+
g) = ho(a)/ha(a + €) for small € but also h,(z) has heavier tails than ¢(z) since
d(a)/d(a + &) > hg(a)/ha(a + €) for any € > 0. Thus, we choose hy(z) =
ae~ =9 (g < z < 00) as the importance sampling density for estimating P(Z >
a). Note that Oh and Kim (1994) also chose h,(z) for estimating the extreme
tail probability of t-distributions by importance sampling method.

Second, if we let C; = P(a; < Z < a;+1) and @41 = oo then p; = pir1 + C;
fori=1,...,m. Since, given p;11, we only need to estimate C; for p;, we suggest
to estimate C;’s separately and use them to estimate p;. Note that, the regions
(a; < Z < aiy1)’s are disjoint and C; needs to be estimated only once. As the
importance sampling density for estimation of C;, we use the pdf of the shifted
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exponential distribution restricted to (a; < Z < a;y1), i-€., gi(2) = hq,(2)I(a; <
z < ai+1)/Ai, where A; = [ ho,(2)dz = e~ai(aiv1—ai)

Third, since a few p;’s, i.e., a few C;’s are dominant in computing the total er-
ror probability, it would be desirable to use a large number of samples for the dom-
inant C;’s and a small number of samples for the rest. Accurate estimation of the
dominant C;’s are important while relatively inaccurate estimation of negligible
C;’s does not significantly affect the accuracy of the total error probability. This
idea of intelligent stratification (allocation) of samples can be achieved as follows.
Given the total of N samples, allocate N; = N-A;¢(a;)/ Y iv; Ai¢(as;) samples for
estimating C;. Note that A;¢(a;) is an approximation to C; = P(a; < Z < aj+1)
and the probability C; can be considered as a measure of contribution of the
region (a;, a;4+1) to the total error probability. For more improvement of the al-
location, one may run a preliminary importance sampling with N; < A;é(a;),
estimate Cj;, and then run the actual importance sampling with N; proportional
to the estimated C;.

Allocation of N; «x A;¢(a;) or N; C; can make some of N;’s equal to zero.
This often happens in practice since there are negligibly small C;’s. Deletion of
those C;’s in computation would save computing cost but it would bring a bias
in estimating the total error probability. Moreover, very small N;’s, though not
zero, may yield inaccurate estimates of C;’s and cumulation of inaccurate C;’s
may affect estimation of the total error probability. Thus, we suggest to equally
allocate a small portion, say » € (0,1), of N to all C;’s and allocate the rest
proportional to C;, taking compromise between equal allocation and stratified
allocation.

We summarize the idea in the following algorithm.

Importance sampling algorithm for the error probability
1. Input N,r,02,b,h,p,ds.

2. From possible 2P combinations of dx_1 = *A,...,dy—p = A, compute
af = —h'd, where d = (di, dg—1,...,dk—p)", for i =1,...,2P.

3. Sort {a}} such that a] < --- < a},, where m = 2P.
a9 = e—ai(ait1—ai)
4. Let a; = -+ and A; =e + .

5 Fori=m.m—-1..... 1. do:
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5.1. Let N; = & 4

5.2. Generate Xij ~ gi(z) =

5.3. Compute w;; =

5.4. Let

5.5. Let

Aip(ai)
(N - TN) i=1 A1,¢(az) ’

ae” % (z—a;)

2776225235377j:= 1p..,ﬁh,
HX) |
g(X‘z])’ ]_1”",Nz.
N;
N 1 U
CE A Wig,
13 ]‘—‘1
1 1 &
Var(Cy) = (5 2wh — G-
(2 1 j=1

pi = Ci + Pir1, where Pry1 =0
Var(pi) = Var(Ci) + -+ + Var(Cp).

6. Estimate the total error probability and its variance by

C'I”T'O?"

-~

Var(P(error))

= Ez:pw

= W[Var(Cl) + 22V21r(é'2) + 32V;1r(CA'3) +

+m*Var(Cp)].

4. AN EXAMPLE

163

To see the efficiency of the proposed algorithm we apply the algorithm to
the case of p = 2, A = 5.77, b = (1,0.2,0.1), h = (1,0.2,0.1), o2
~A, r =0.4. We use the threshold xg = 0 and try the total number of samples

N = 5,000, 10,000, 15, 000, . ..

:1, dk:

,50,000. We compare the probabilities and their

SE’s from the proposed algorithm with those from Stadler and Roy (1993) in
which the pdf of a shifted normal distribution N(0,1)I(z > a) is used as the
importance sampling density and stratification is not used. The results given in
Table 4.1 show that the estimates from the proposed algorithm are significantly
more accurate than those from the importance sampling with the shifted normal
density. The standard errors are about 30 times smaller in the proposed method,
implying that the accuracy is improved significantly.



164

MAN-SUK On

TABLE 4.1 Estimates of the error probability and their SE from the proposed importance sampling
algorithm and the importance sampling by Stadler and Roy (1993).

N Nz dk—l dk:—2 Pproposed SEproposed }SS&R SES&R %
5,000 3,485 +5.77 +5.77 0.269E-04 0.360E-07 0.273E-04 0.100E-05 0.0358
514 +5.77 —5.77 0.102E-06 0.301E-09 0.105E-06 0.454E-08 0.0663
500 —5.77 +5.77 0.109E-09 0.219E-12 0.111E-09 0.544E-11 0.0403
500 -5.77 —5.77 0.316E-13 0.576E-16 0.319E-13 0.173E-14 0.0332
total 5,000 0.270E-04 0.360E-07 0.274E-04 0.100E-05 0.0358
10,000 6,970 +5.77 +5.77 0.268E-04 0.262E-07 0.252E-04 0.693E-06 0.0378
1,029 +5.77 —5.77 0.103E-06 0.204E-09 0.966E-07 0.312E-08 0.0653
1,000 —5.77 +5.77 0.109E-09 0.166E-12 0.101E-09 0.374E-11 0.0445
1,000 —-5.77 —5.77 0.316E-13 0.382E-16 0.292E-13 0.119E-14 0.0320
total 10,000 0.269E-04 0.262E-07 0.253E-04 0.693E-06 0.0378
15,000 10,456 +5.77 +5.77 0.268E-04 0.210E-07 0.271E-04 0.584E-06 0.0360
1,643 +5.77 —5.77 0.103E-06 0.154E-09 0.104E-06 0.264E-08 0.0583
1,500 —-5.77 +5.77 0.109E-09 0.134E-12 0.110E-09 0.316E-11 0.0424
1,500 —-5.77 —-5.77 0.317E-13 0.253E-16 0.319E-13 0.100E-14 0.0251
total 15,000 0.269E-04 0.210E-07 0.272E-04 0.584E-06 0.0360
20,000 13,941 +5.77 +5.77 0.268E-04 0.182E-07 0.263E-04 0.506E-06 0.0360
2,058 +5.77 —5.77 0.103E-06 0.134E-09 0.101E-06 0.230E-08 0.0585
2,000 —5.77 +5.77 0.109E-09 0.107E-12 0.108E-09 0.278E-11 0.0387
2,000 —-5.77 —5.77 0.316E-13 0.238E-16 0.312E-13 0.891E-15 0.0267
total 20,000 0.269E-04 0.182E-07 0.264E-04 0.506E-06 0.0360
25,000 17,426 +5.77 +5.77 0.268E-04 0.164E-07 0.268E-04 0.450E-06 0.0365
2,573 +5.77 —5.77 0.103E-06 0.115E-09 0.103E-06 0.203E-08 0.0568
2,500 —5.77 +5.77 0.109E-09 0.983E-13 0.109E-09 0.244E-11 0.0402
2,500 —5.77 —5.77 0.316E-13 0.225E-16 0.315E-13 0.777E-15 0.0290
total 25,000 0.164E-07 0.269E-04 0.450E-06 0.365E-01
30,000 20,912 +5.77 +5.77 0.268E-04 0.152E-07 0.273E-04 0.417E-06 0.0363
3,087 +5.77 —5.77 0.103E-06 0.107E-09 0.105E-06 0.189E-08 0.0564
3,000 -5.77 +5.77 0.109E-09 0.958E-13 0.112E-09 0.228E-11 0.0419
3,000 —5.77 —5.77 0.317E-13 0.187E-16 0.325E-13 0.729E-15 0.0257
total 30,000 0.269E-04 0.152E-07 0.274E-04 0.417E-06 0.0363
35,000 24,397 +5.77 +5.77 0.268E-04 0.138E-07 0.265E-04 0.381E-06 0.0362
3,602 +5.77 —5.77 0.103E-06 0.103E-09 0.102E-06 0.172E-08 0.0597
3,500 —5.77 +5.77 0.109E-09 0.858E-13 0.108E-09 0.207E-11 0.0414
3,500 -5.77 -5.77 0.316E-13 0.187E-16 0.312E-13 0.661E-15 0.0283
total 35,000 0.269E-04 0.138E-07 0.266E-04 0.381E-06 0.0362

(continued)



PERFORMANCE EVALUATION viA MONTE CARLO 165

N Ni di-i di2 Pproposed SEproposed Pssr SEsgn P—%‘Z:’;—";“
40,000 27,882 +5.77 +5.77 0.268E-04 0.131E-07 0.272E-04 0.360E-06 0.0364
4,116 +5.77 -5.77 0.103E-06 0.988E-10 0.105E-06 0.163E-08 0.0604
4,000 -5.77 +5.77 0.109E-09 0.780E-13 0.111E-09 0.196E-11 0.0397
4,000 -5.77 -5.77 0.316E-13 0.166E-16 0.323E-13 0.627E-15 0.0265

total 40,000 0.269E-04 0.131E-07 0.273E-04 0.360E-06 0.0364

45,000 31,368 +5.77 +5.77 0.268E-04 0.121E-07 0.271E-04 0.336E-06 0.0361
4,631 +5.77 —5.77 0.103E-06 0.945E-10 0.104E-06 0.152E-08 0.0621

4,500 —5.77 +5.77 0.109E-09 0.744E-13 0.110E-09 0.182E-11 0.0407

4,500 -5.77 -5.77 0.316E-13 0.176E-16 0.318E-13 0.581E-15 0.0303

total 45,000 0.269E-04 0.121E-07 0.272E-04 0.336E-06 0.0361

50,000 34,853 +5.77 +5.77 0.268E-04 0.116E-07 0.269E-04 0.321E-06 0.0361
5,146 +5.77 —5.77 0.103E-06 0.863E-10 0.103E-06 0.145E-08 0.0593

5,000 -5.77 +5.77 0.109E-09 0.710E-13 0.110E-09 0.174E-11 0.0406

5,000 —5.77 —-5.77 0.316E-13 0.165E-16 0.318E-13 0.558E-15 0.0297

total 50,000 ' 0.269E-04 0.116E-07 0.270E-04 0.321E-06 0.0361

Next, to see the effect of stratification, we estimate the probabilities without
stratification (equal allocation for each of the four cases) and compare the results
with those from with stratification. Note that we use the same shifted exponential
density as the importance sampling density in both procedures. 'The ratio of SE
with stratification versus SE without stratification is about 60%, s> there is about
40% reduction solely by the intelligent stratification.

5. SUMMARY AND DISCUSSION

We have proposed an efficient importance sampling algorithn: for estimating
the bit error probability in single user digital communication systems. Specifi-
cally, we have proposed a shifted exponential density as the importance sampling
density and derived an appropriate rate of the exponential disiribution. This
choice of the importance sampling density is adaptive in that it adjusts the rate
and the origin of the shifted exponential density according to the error space. The
adaptive shifted exponential importance sampling density improves the accuracy
of the estimates astonishingly as shown in the example. We also have proposed
a stratified allocation of the samples such that more samples sre allocated to
more important part of the error probability. The stratification requires almost
no extra cost but improves the accuracy significantly. Finally, the algorithm uses
the nested feature of the error space and avoids redundancy in estimating the
probability.
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Future research interest is the computation of error probability in multi-user
digital communication systems. This requires computation of tail probabilities in
multivariate normal distributions in which the variables are correlated. Extension
of the univariate shifted exponential distribution to a multivariate distribution
which mimics the given covariance structure of the multivariate normal distribu-
tion in the tail area would be the key issue for the multi-user systems.
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