• Title/Summary/Keyword: Error ellipse

Search Result 34, Processing Time 0.031 seconds

Error Analysis of Trilateration Network by Confidence Ellipse (신뢰타원에 의한 삼변망의 오차해석)

  • 백은기;구재동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 1995
  • Error analysis is important in horizontal positioning. In case of error analysis, standard error ellipse is generally used to establish the precision regions, but it will be replaced by 95% confidence ellipse. It is more effective than standard error ellipse in resection for measured procedures and establishment for criterias of relative error. Therefore, In this paper deals with analysis of application to 95% confidence ellipse in horizontal positioning. This study deals with error analysis of plane trilateration network which are various types of control point. also, this paper have studied for theory of error analysis in order to using least square adjustment. Thus, This paper's conclusion are as follows; 95% confidence ellipse could be used to establish of specification in korea, also, it is possible for us to predesign for optimum surveying network by 95% confidence ellipse.

  • PDF

Error Analysis of Time-Based and Angle-Based Location Methods (시간기반과 각도기반의 측위방식 성능비교 및 오차 특성 분석)

  • Kim Dong-Hyeok;Song Seung-Hun;Sung Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.962-967
    • /
    • 2006
  • Indoor positioning is highlighted recently, and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are classified into time-based and angle-based one. This paper presents the error analysis of time-based and angle-based location methods. Because measurements of these methods are nonlinear, linearizations are needed in both cases to estimate the user position. In the linearization, Gauss-Newton method is used in both cases. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA.

The Study on Horizontal Positioning by the Analytical Intersection and Resection (해석적 교회법에 의한 수평위치결정에 관한 연구)

  • 유복모;최철순;유환희;신춘억
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.3 no.1
    • /
    • pp.15-25
    • /
    • 1985
  • This paper improves the accuracy of horizontal positioning by means of the analytical Intersection and Resection. For this purpose, by increasing the number of Known points, the magnitude of errors occurred in unknown points is represented by error ellipse, and the variation of error ellipse is examined. Also, by applying weights according to each measured angles and distances, the variation of error ellipse is analysized.

  • PDF

Error Analysis of time-based and angle-based location methods

  • Kim, Dong-Hyouk;Song, Seung-Hun;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.479-483
    • /
    • 2006
  • Indoor positioning is recently highlighted and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are often classified into time-based and angle-based one, and this paper presents the error analysis of these location methods. Because measurement equations of these methods are nonlinear, linearization is usually needed to get the position estimate. In this paper, Gauss-Newton method is used in the linearization. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of error ellipses of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid scheme is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA method.

  • PDF

Contour Error Analysis and Feed Controller Optimization for Machining Center (머시닝센터를 위한 윤곽오차 분석 및 이송축 제어기 최적화)

  • 김성현;윤강섭;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2003
  • One of the most important performance criteria related to the gain tuning of controller for CNC machining center is the contour error. This study analyzed circular error by the axis-matched and mismatched cases. To reduce ellipse and radius error, it is necessary to set the gain for each axis to be same bandwidth and high response. Based on the analysis in the frequency domain, we simulate feed system by mathematical model and then predict bandwidth of each axis. For analysis of structure vibration while the each axis is moving, we try the various of measuring method and position loop is improved by jerk limit.

A Reliability Analysis of Free- Network Adjustment in the Deformation Surveying. (변형측량에서 자유망조정기법의 신뢰성 분석)

  • 유복모;정영동;이석군
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.56-64
    • /
    • 1987
  • The concept of standard error ellipse and confidence ellipse is vtilized in the detection of displaced station which are uncluded in the observational network. In this paper, the influences on the accuracy of unknown stations according to the varied selection and geometrical conditions of fixed stations were evaluated. And then the displaced stations were detected by error ellipse concept, and the amounts of displacement were determined by coordinate differences between epochs which were calculated by fixed point adjustment and free network adjustment. As a result, it is found that the free network adjustment is more efficient in the detection and displacement calculation of displaced stations.

  • PDF

Image processing method of two-phase bubbly flow using ellipse fitting algorithm (최적 타원 생성 알고리즘 기반 2상 기포 유동 영상 처리 기법)

  • Myeong, Jaewon;Cho, Seolhee;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • In this study, an image processing method for the measurement of two-phase bubbly flow is developed. Shadowgraphy images obtained by high-speed camera are used for analysis. Some bubbles are generated as single unit and others are overlapped or clustered. Single bubbles can be easily analyzed using parameters such as bubble shape, centroid, and area. But overlapped bubbles are difficult to transform clustered bubbles into segmented bubbles. Several approaches were proposed for the bubble segmentation such as Hough transform, connection point method and watershed. These methods are not enough for bubble segmentation. In order to obtain the size distribution of bubbles, we present a method of splitting overlapping bubbles using watershed and approximating them to ellipse. There is only 5% error difference between manual and automatic analysis. Furthermore, the error can be reduced down to 1.2% when a correction factor is used. The ellipse fitting algorithm developed in this study can be used to measure bubble parameters accurately by reflecting the shape of the bubbles.

Eye Gaze Interface in Wearable System (웨어러블 시스템에서 눈동자의 움직임을 이용한 인터페이스)

  • 권기문;이정준;박강령;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2124-2127
    • /
    • 2003
  • This paper suggests user interface method with wearable computer by means of detecting gaze under HMD, head mounted display, environment. System is derived as follows; firstly, calibrate a camera in HMD, which determines geometrical relationship between monitor and captured image. Second, detect the center of pupil using ellipse fitting algorithm and represent a gazing position on the computer screen. If user blinks or stares at a certain position for a while, message is sent to wearable computer. Experimental results show ellipse fitting is robust against glint effects, and detecting error was 6.5%, and 4.25% in vertical and horizontal direction, respectively.

  • PDF

A Study on the Position Accuracy Improvement Applying the Rectangular Navigation in the Hyperbolic Navigation System Area. (쌍곡선항법시스템을 이용한 직각항법에 의한 측위정도 향상에 관한 연구)

  • 김우숙;김동일;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • Nowadays Hyperbolic Navigation System-LORAN, DECCA, OMEGA, OMEGA-is available on the ocean, and Spherical Navigation System, GPS (Global Positioning System) is operated partially. Hyperbolic Navigation System has the blind area near the base line extention because divergence rate of hyperbola is infinite theoretically. The Position Accuracy is differ from the cross angle of LOP although each LOP has the same error of quantity. GDOP(Geometric Dilution of Precisoin) is used to estimate the position accuracy according to the cross angle of LOP and LOP error. Hyperbola and ellipse are crossed at right angle everywhere. Hyperbola and ellipse are used to LOP in Rectangular Navigation System. The equation calculating the GDOP of rectangular Navigation System is induced and GDOP diagram is completed in this paper. A scheme that can improve the position accuracy in the blind area of Hyperboic Navigation System using the Rectangular Navigation System is proposed through the computer simulation.

  • PDF