• Title/Summary/Keyword: Error Rate

Search Result 5,763, Processing Time 0.031 seconds

Comparison of The BER Performance Using Channel coding Depending on The Transmitter-receiver depth in The Underwater Channel (수중통신채널에서 채널코딩을 이용한 송수신 깊이별 에러오율 비교 연구)

  • Lee, Duck-Soo;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • Underwater communication is affected by reverberation and noise characteristics of the underwater channel and time delay takes place by multipath. Hence, Signal is distorted and a lot of error is generated in the transmitting/receiving by multipath effects, so a channel coding for error correction is required. We propose a channel coding algorithm which is possible to correct error of received signal. We compare and analyze BER(bit error rate) performance depending on the depth of each transmitter-receiver using channel coding algorithm. QPSK was used as a modulation method, and 1/2 code rate convolution coding was used as a coding rate. A convolution coding method shows increase of BER performances.

Cold Data Identification using Raw Bit Error Rate in Wear Leveling for NAND Flash Memory

  • Hwang, Sang-Ho;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.1-8
    • /
    • 2015
  • Wear leveling techniques have been studied to prolong the lifetime of NAND flash memory. Most of studies have used Program/Erase(P/E) cycles as wear index for wear leveling. Unfortunately, P/E cycles could not predict the real lifetime of NAND flash blocks. Therefore, these algorithms have the limited performance from prolonging the lifetime when applied to the SSD. In order to apply the real lifetime, wear leveling algorithms, which use raw Bit Error Rate(rBER) as wear index, have been studied in recent years. In this paper, we propose CrEWL(Cold data identification using raw Bit error rate in Wear Leveling), which uses rBER as wear index to apply to the real lifetime. The proposed wear leveling reduces an overhead of garbage collections by using HBSQ(Hot Block Sequence Queue) which identifies hot data. In order to reduce overhead of wear leveling, CrEWL does not perform wear leveling until rBER of the some blocks reaches a threshold value. We evaluate CrEWL in comparison with the previous studies under the traces having the different Hot/Cold rate, and the experimental results show that our wear leveling technique can reduce the overhead up to 41% and prolong the lifetime up to 72% compared with previous wear leveling techniques.

An Automatic Signature Verification Algorithm for Smart Devices

  • Kim, Seong-Hoon;Fan, Yunhe;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, we propose a stable automatic signature verification algorithm applicable to various smart devices. The proposed algorithm uses real and forgery data all together, which can improve the verification rate dramatically. As a tool for signature acquisition in a smart device, two applications, one using touch with a finger and the other using a pressure-sensing-stylus pen, are developed. The verification core is based on SVM and some modifications are made to include the characteristics of signatures. As shown in experimental results, the minimum error rate was 1.84% in the SVM based method, which can easily defeat 4.38% error rate with the previous parametric approach. Even more, 2.43% error rate was achieved with the features excluding pressure-related features, better than the previous approach including pressure-related features and only about 0.6% more error than the best result, which means that the proposed algorithm can be applied to a smart device with or without pressure-sensing-stylus pens and used for security purposes.

Reliability on Accelerated Soft Error Rate in Static RAM of Thin Film Transistor Type (소프트 에러율에 대한 박막 트랜지스터형 정적 RAM의 신뢰성)

  • Kim Do-Woo;Wang Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.507-511
    • /
    • 2006
  • We investigated accelerated soft error rate (ASER) in static random access memory (SRAM) cells of thin film transistor (TFT) type. The effects on ASER by cell density, buried nwell structure, operational voltage, and polysilicon-2 layer thickness were examined. The increase in the operational voltage, and the decrease in the density of SRAM cells, respectively, resulted in the decrease of ASER values. The SRAM chips with buried nwell showed lower ASER than those with normal well structure did. The ASER decreased as the test distance from alpha source to the sample increased from $7{\mu}m\;to\;15{\mu}m$. As the polysilicon-2 thickness increased up to $1000\;{\AA}$, the ASER decreased exponentially. In conclusion, the best condition for low soft error rate, which is essential to obtain highly reliable SRAM device, is to apply the buried nwell structure scheme and to fabricate thin film transistors with the thick polysilicon-2 layer

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

The Improvement Method of ARS Attitude depeding on Dynamic Conditions (기동특성에 따른 ARS 자세 성능향상 기법)

  • Park, Chan-Ju;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.30-37
    • /
    • 2008
  • The ARS(Attitude Reference System) calculates an attitude of a vehicle using inertial angular rate sensors and acceleration sensors. The attitude error of ARS increases due to the integration of angular rate sensor output. To reduce the attitude error an acceleration of sensor is used similar to leveling method of INS(Inertial Navigation System). When an acceleration of vehicle is increased, it is difficult to calculate the attitude error using acceleration sensor output. In this paper the estimation method of acceleration due to the attitude error only is proposed. Two methods of the attitude calculation depending on vehicle dynamics and the integration method of these two methods are proposed. To verify its performance the monte carlo simulation is performed and shows that it bounds attitude error of ARS to reasonable level.

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

A study on 1 & 2 dimensional minimum mean-squared-error equalization for digital holographic data storage system (디지털 홀로그래픽 데이터 저장 시스템을 위한 1차원 및 2차원 최소 평균-제곱-에러 등화에 관한 연구)

  • 최안식;전영식;정종래;백운식
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.486-492
    • /
    • 2002
  • In this paper. we presented 1 & 2 dimensional minimum mean-squared-error (MMSE) equalization scheme in a digital holographic data storage system to improve bit-error-rate (BER) and to mitigate inter-symbol interference (ISI) which were generated during the data storage and retrieval processes. We showed experimentally for ten data pages retrieved from the holographic storage system that BER and signal-to-noise ratio (SNR) were improved by adopting MMSE equalization.

Adaptive Resource Allocation Algorithm for HIPERLAN/2 with Error Channel (HIPERLAN/2의 에러 채널을 위한 적응적 자원 할당 알고리즘)

  • 김창균;조광오;이정규
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, we proposed ARAHE(Adaptive Resource Allocation algorithm for HIPERLAN/2 with Error channel). It uses EIB(Error Indication Bits) for efficient resource allocation. We evaluate the performance of ARAHE by simulation and the result shows ARAHE has better performance than current method in the case of delay, utilization and TSR(Transmission Success Rate).

A Study on Error Characteristics of Large Size Electromagnetic Flowmeter in the Range of Low Velocity (저유속 영역에서 대구경 전자기유량계의 오차특성 연구)

  • Lee, Dong-Keun;Park, Jong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.235-240
    • /
    • 2008
  • The large size electromagnetic flowmeter was tested to investigate the variation of its error characteristics in the range of low velocity under 0.6 m/s using flowmeter calibration system. For the two case of valve opening rate 100 % and 50 %, these tests were undertaken three times each for twelve velocity condition from $0.05\;^m/s\;to\;0.6\;^m/s$ with increment of $0.05\;^m/s$. It is shown that error characteristic of electromagnetic flowmeter was stabilized within ${\pm}0.4%$ of rate both higher than $0.25^m/s$ of velocity condition and 50 % of valve opening position. But, measurement deviation of flowmeter for ${\Phi}400mm\;and\;{\Phi}600mm$ was out of expected deviation range. It is necessary to correction with calibration. In conclusion, error characteristic of electromagnetic flowmeter wasn't changed proportion to its size.