• Title/Summary/Keyword: Error Probability

Search Result 1,360, Processing Time 0.034 seconds

A Study on the PR Shaped SQAM Performance with Carrier Phase Error (PR Shaped SQAM의 Performance에 Carrier Phase Error가 미치는 영향에 관한 연구)

  • 박용우;이형재
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1983.10a
    • /
    • pp.97-101
    • /
    • 1983
  • A Study is presented showing the effect of carrier phase error on the error-rate of a PR shaped SQAM digital radio system. A simple upper bound on the probability of error as a function of phase error is derived and compared to one another. The result is that if carrier phase error is less than 3 there is no serious degradation.

  • PDF

Reference Priors in a Two-Way Mixed-Effects Analysis of Variance Model

  • Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.317-328
    • /
    • 2002
  • We first derive group ordering reference priors in a two-way mixed-effects analysis of variance (ANOVA) model. We show that posterior distributions are proper and provide marginal posterior distributions under reference priors. We also examine whether the reference priors satisfy the probability matching criterion. Finally, the reference prior satisfying the probability matching criterion is shown to be good in the sense of frequentist coverage probability of the posterior quantile.

  • PDF

A New Constant Modulus Algorithm based on Maximum Probability Criterion

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.85-90
    • /
    • 2009
  • In this paper, as an alternative to constant modulus algorithm based on MSE, maximization of the probability that equalizer output power is equal to the constant modulus of the transmitted symbols is introduced. The proposed algorithm using the gradient ascent method to the maximum probability criterion has superior convergence and steady-state MSE performance, and the error samples of the proposed algorithm exhibit more concentrated density functions in blind equalization environments. Simulation results indicate that the proposed training has a potential advantage versus MSE training for the constant modulus approach to blind equalization.

An Efficient Synchronization and Cell Searching Method for OFDMA/TDD System (OFDMA/TDD 시스템을 위한 효율적인 동기 추정 및 셀 탐색 기법)

  • Kim, Jung-Ju;Noh, Jung-Ho;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.714-721
    • /
    • 2005
  • In this parer, we analyze the preamble model in the OFDMA/TDD(OFDM-FDMA/Time Division Duplexing). Besides, under AWGN, ITU-R M.1225 Ped-B and Veh-A channel environments, we analyze capabilities of symbol timing & carrier frequency offset and performance of cell searching capabilities applied to OFDM/TDD system through computer simulation. The performance using Detection Probability, False Alarm Probability, Missing Probability, Mean Acquisition Time and MSE(Mean Square Error) is analyzed. Especially, in the case of symbol timing offset estimation, the preamble structure and its algorithm with enhanced performance are proposed and then compared with existing ones.

Detection Probability Improvement of Bias Error of GPS Carrier Measurement using Baseline Constraint (기저선 제한조건을 이용한 GPS 반송파 바이어스 오차의 검출확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.88-93
    • /
    • 2004
  • A method is suggested for validating the existence of bias error on GPS carrier measurement. The baseline constraint is used as an addition measurement, which augments the original measurement equation. The detection probability is calculated on both cases. The first case is using GPS carrier measurement only, the second case is using GPS carrier and a baseline constraint. The improvement of the detection probability is shown, and the advantage of using baseline constraint is described statistically, the results of the simulation is shown and analyzed.

Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions (시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정)

  • Park Sung-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

Vessel traffic geometric probability approaches with AIS data in active shipping lane for subsea pipeline quantitative risk assessment against third-party impact

  • Tanujaya, Vincent Alvin;Tawekal, Ricky Lukman;Ilman, Eko Charnius
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • A subsea pipeline designed across active shipping lane prones to failure against external interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) for subsea pipeline against vessel anchor dropping and dragging and vessel sinking.

A Fusion Algorithm considering Error Characteristics of the Multi-Sensor (다중센서 오차특성을 고려한 융합 알고리즘)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.4
    • /
    • pp.274-282
    • /
    • 2009
  • Various location tracking sensors; such as GPS, INS, radar, and optical equipment; are used for tracking moving targets. In order to effectively track moving targets, it is necessary to develop an effective fusion method for these heterogeneous devices. There have been studies in which the estimated values of each sensors were regarded as different models and fused together, considering the different error characteristics of the sensors for the improvement of tracking performance using heterogeneous multi-sensor. However, the rate of errors for the estimated values of other sensors has increased, in that there has been a sharp increase in sensor errors and the attempts to change the estimated sensor values for the Sensor Probability could not be applied in real time. In this study, the Sensor Probability is obtained by comparing the RMSE (Root Mean Square Error) for the difference between the updated and measured values of the Kalman filter for each sensor. The process of substituting the new combined values for the Kalman filter input values for each sensor is excluded. There are improvements in both the real-time application of estimated sensor values, and the tracking performance for the areas in which the sensor performance has rapidly decreased. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance. The trajectory of a UAV is generated in an experiment and a performance analysis is conducted with other fusion algorithms.

A study on position control of wheeled mobile robot using the inertial navigation system (관성항법시스템을 이용한 구륜 이동 로보트의 위치제어에 관한 연구)

  • 박붕렬;김기열;김원규;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1144-1148
    • /
    • 1996
  • This paper presents WMR modelling and path tracking algorithm using Inertial Navigation System. The error models of gyroscope and accelerometers in INS are derived by Gauss-Newton method which is nonlinear regression model. Then, to test availability of error model, we pursue the fitness diagnosis about probability characteristic for real data and estimated data. Performance of inertial sensor with error model and Kalman filter is pursued by comparing with one without them. The computer simulation shows that position error remarkably decrease when error compensation is applied.

  • PDF

Estimation of Zero-Error Probability of Constant Modulus Errors for Blind Equalization (블라인드 등화를 위한 상수 모듈러스 오차의 영-확률 추정 방법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • Blind algorithms designed to maximize the probability that constant modulus errors become zero carry out some summation operations for a set of constant modulus errors at an iteration time inducing heavy complexity. For the purpose of reducing this computational burden induced from the summation, a new approach to the estimation of the zero-error probability (ZEP) of constant modulus errors (CME) and its gradient is proposed in this paper. The ZEP of CME at the next iteration time is shown to be calculated recursively based on the currently calculated ZEP of CME. It also is shown that the gradient for the weight update of the algorithm can be obtained by differentiating the ZEP of CME estimated recursively. From the simulation results that the proposed estimation method of ZEP-CME and its gradient produces exactly the same estimation results with a significantly reduced computational complexity as the block-processing method does.