• Title/Summary/Keyword: Error Interpolation

Search Result 503, Processing Time 0.04 seconds

Identification of motion error sources in NC machine tools by a circular interpolation test (원호보간시험에 의한 수치제어 공작기계의 운동오차원인 진단에 관한 연구)

  • Hong, Seong-Wook;Shin, Young-Jae;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.126-137
    • /
    • 1993
  • This paper presents an efficient method for the identification of motion error sources in NC machine tools by making use of the circular interpolation test, which is often used in estimating the motion accuracy of NC machine tools. Mathematical formulae are described for motion errors due to various kinds of error sources. Two identification formulae are proposed: one is based on the frequency analysis and the other is formulated with the weithted residual method. Motion error signal is classified into two patterns, mean errors(mean of CW and CCW test signals from mean errors). The sources of the mean errors are identified by using the frequency analysis technique and the sources of the deviation errors by the weighted residual formulaltion. A menu driven, user oriented, computer program is written to realize the full steps of the proposed identificationprocedure. Then, the identification method is applied to two NC machine tools.

  • PDF

Interpolation Error Concealment Method of Motion Compensated Interpolated Frame for Motion Compensated Frame Rate Conversion (움직임 보상 프레임 율 변환 기법을 위한 움직임 보상 보간 프레임의 보간 오류 은닉 기법)

  • Lee, Jeong-Hun;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.927-928
    • /
    • 2008
  • In this paper, a interpolation error concealment algorithm of motion compensated interpolated frame for motion compensated frame rate conversion to reduce the block artifacts caused by failure of conventional motion estimation based on block matching algorithm is proposed. Experimental results show good performance of the proposed scheme with significant reduction of the block artifacts.

  • PDF

Comparison of Interpolation Methods for Reconstructing Pin-wise Power Distribution in Hexagonal Geometry

  • Lee, Hyung-Seok;Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.303-313
    • /
    • 1999
  • Various interpolation methods have been compared for reconstruction of LMR pin power distributions in hexagonal geometry. Interpolation functions are derived for several combinations of nodal quantities and various sets of basis functions, and tested against fine mesh calculations. The test results indicate that the interpolation functions based on the sixth degree polynomial are quite accurate, yielding maximum interpolation errors in power densities less than 0.5%, and maximum reconstruction errors less than 2% for driver assemblies and less than 4% for blanket assemblies. The main contribution to the total reconstruction error is made tv the nodal solution errors and the comer point flux errors. For the polynomial interpolations, the basis monomial set needs to be selected such that the highest powers of x and y are as close as possible. It is also found that polynomials higher than the seventh degree are not adequate because of the oscillatory behavior.

  • PDF

The Study of Performance Improvement of the 3-Cup Anemometer using Interpolation Methods (Interpolation을 이용한 3-CUP Anemometer의 성능 개선에 관한 연구)

  • 이성신;정택식;구법모
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.672-675
    • /
    • 2001
  • In this paper, we propose that the calculation method for accurate wind speed using interpolation methods, and the finding method for accurate wind direction using interpolation polynomial, so we make better performance for 3-Cup Anemometer by the proposed methods. We embody the 3-Cup Anemometer with photo sensor to measure wind direction and wind speed. In order to more accurate wind speed and wind direction, we present the methods to overcome the limitations of system memory and of the sensor measurement error by 8 bit gray code (as substitute 360 degrees for 256 degrees data).

  • PDF

Image Interpolation Using Loss Information Estimation and Its Implementation on Portable Device (손실 정보 추정을 이용한 영상 보간과 휴대용 장치에서의 구현)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.45-50
    • /
    • 2010
  • An image interpolation is a technique to use for enhancement of image resolution, it have two problems which are image quality degradation of the interpolated result image and high computation complexity. In this paper, to solve the problem, we propose an image interpolation algorithm using loss information estimation and implement the proposed method on portable device. From reduction image of obtained low resolution image, the proposed method can computes error to use image interpolated and estimate loss information by interpolation of the computed error. The estimated loss information is added to interpolated high resolution image with weight factor. We verified that the proposed method has improved FSNR as 2dB than conventional algorithms by experiments. Also, we implemented the proposed method on portable device and checked up real-time action. The proposed algorithm may be helpful for various application for image enlargement and reconstruction.

Comparative analysis of methods for digital simulation (디지털 전산모사를 위한 방법론 비교분석)

  • Yi, Dokkyun;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.209-218
    • /
    • 2015
  • Computer simulation plays an important role for a theoretical foundation in convergence technology and the interpolation is to know the unknown values from known values on grid points. Therefore it is an important problem to select an interpolation method for digital simulation. The aim of this paper is to compare analysis of interpolation methods for digital simulation. we test six different interpolation methods namely: Quartic-Lagrangian, Cubic Spline, Fourier, Hermit, PWENO and SL-WENO. Through digital simulation of a linear advection equation, we analyse pros and cons for each method. In order to compare performance, we introduce accuracy computing and Error functions. The accuracy computing is used well-known $L^1-norm$ and the Error functions are dispersion function, dissipation function and total error function. High-order methods well apply to computer simulation, unfortunately, side-effects (Oscillation) happen.

Study on Optimization of Look-Up Table to Reduce Error of Three-dimensional Interpolation (3차원 보간 오차를 개선하기 위한 룩업 테이블의 최적화에 관한 연구)

  • Kim, Joo-Young;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.12-18
    • /
    • 2007
  • The three dimensional interpolation is widely used for many kinds of color signal transformation such as real-time color gamut mapping. Given input color signal, the output color signal is approximately calculated by the interpolation with the input point and extracted values from a lookup table which is constructed by storing the values of transformation at regularly packed sample points. Apparently, errors of the interpolated approximation heavily depend on the selection of the lookup table. In this paper, a least square method is applied to assigning values of the lookup table with fixed size in order to minimize error of three-dimensional interpolation. The experimental result shows that the proposed method has better interpolation performance.

Adaptive Error Concealment Technique using a Variable Operating Region Algorithm based on MPEG-4 Coding (연산 영역 가변 알고리즘을 적용한 MPEG-4 부호화 기반의 적응적 오류 은닉 기법)

  • 김병주;권기구;이석환;권성근;김봉석;이건일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.78-88
    • /
    • 2003
  • A novel adaptive error concealment technique is proposed using a variable operating region algorithm based on MPEG-4 coding. In the algorithm, a missing block is classified as flat or edge block based on local information from the surrounding blocks extracted using a Sobel operation in a variable operating region (VOR). In this case, the VOR is determined adaptively according to the number of edge directions in the missing block. 1;sing the classification, the flat blocks are then concealed by the Proposed mean based weighted bilinear interpolation (MWBLI) method, and the edge blocks by the boundary directional interpolation (BDI) method. Consequently, the use of the Proposed VOR improves the subjective performance in a curved edge region, while the adaptive processing based on block classification improves the objective performance. Experimental results confirmed that the proposed algorithm produced better results than conventional algorithms, both subjectively and objectively.

  • PDF

Design of H_$\infty$ state estimator using interpolation method (보간법을 이용한 H_$\infty$상태 추정기 설계)

  • 이금원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1469-1472
    • /
    • 1997
  • For system state estimation, existing LMS type esimators widely used. For example Kalman filter is one of them. In this paper, a state estimator is derived for the H$_{\infty}$ norm of the estimation error spectrum matrix to be minimized. For the solution of this problem classical NP interpolation problem is used. Also, by deriving the duality between the filter problem and the well-known H$_{\infty}$ control problem, another solution is obtained. The computer simuation results show that H$_{\infty}$ estimator has less estimation error and so this is better than the existing Kalman filter estimator.or.

  • PDF

Design of a Symbol Timing Recovery of QAM Using the Interpolation in AWGN channel (AWGN 채널에서 보간기를 이용한 QAM 방식에 대한 심볼동기회로 설계)

  • 박범대;오동진;김철성
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.77-80
    • /
    • 1999
  • This paper deals with a design of a symbol timing recovery circuit of QAM using the interpolation in AWGN channel. To reduce timing jitter and the amount of processing data, we employ MGA (Modified Gardner Algorithm) as a symbol timing error detector which is called NDA(Nondecision Directed Algorithm). We show the characteristics (S-curve and the variance) of timing error detector with the roll-off factor of a shaping filter, which are compared with GA. Also, we compare the BER curve of interpolation method with that of ideal case. The performance of the STR is shown to be close to that of ideal case. This result shows that this method can be useful to implement symbol timing recovery circuit for multi-level modulation.

  • PDF