• Title/Summary/Keyword: Error Equation

Search Result 1,572, Processing Time 0.029 seconds

Preparation of Cosmeceuticals Containing Scutellaria baicalensis Extracts: Optimization of Emulsion Stability and Antibacterial Property (황금추출물이 함유된 Cosmeceuticals의 제조: 유화안정성 및 항균특성 최적화)

  • Seheum Hong;Young Woo Choi;Wenjia Xu;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.316-320
    • /
    • 2024
  • To optimize the emulsion stability and antibacterial activity against Escherichia coli (E. coli) of cosmeceuticals using Scutellaria baicalensis extracts and olive wax as natural emulsifiers, we conducted a study. The independent variables were the amounts of Scutellaria baicalensis extracts and olive wax added. The response variables included the emulsion stability index (ESI) of the cosmeceuticals product and the inhibition diameter against E. coli. Through central composite design-response surface methodology (CCD-RSM), we obtained a statistically significant and reliable regression equation within a 95% confidence interval. By optimizing multiple responses, we determined that the optimal emulsification conditions that satisfied both ESI and E. coli inhibition diameter were 3.7 wt% of Scutellaria baicalensis extracts and 2.7 wt% of olive wax. The predicted ESI and E. coli inhibition diameter were 97.9% and 9.7 mm, respectively. When actual experiments were conducted under the optimal conditions, the measured ESI and E. coli inhibition diameter were 95.0% and 9.4 mm, respectively, with an average error rate of 3.2 ± 0.4%.

Extraction of Nature Pigment with Antioxidant Properties from Sprout Barley - Optimization Using CCD-RSM (새싹보리로부터 항산화기능성을 갖는 천연색소의 추출 - CCD-RSM을 이용한 최적화)

  • Dong Hwan Kim;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.222-229
    • /
    • 2024
  • The use of low-toxic, hypoallergenic, and environmentally friendly natural pigments has increased. With growing interest in health, research on natural extracts containing beneficial substances for the human body is actively underway. In this study, natural pigments were extracted from sprout barley using a solvent extraction method and CCD-RSM was used to optimize the extraction process. The experiment's independent variables included extraction temperature, alcohol/ultra-pure volume ratio, and extraction time. The response variables were set to achieve a target chromaticity (L = 45, a = -35, b = 45), and to maximize DPPH radical scavenging activity evaluating the antioxidant capacity. The statistical significance of the main effect, interaction effect, and effect on the response value was evaluated and analyzed through the F and P values for the regression equation variables calculated using RSM optimization. Additionally, the reliability of the experiment was also confirmed through the P values of the probability plot graph. The extraction conditions for optimizing the four reaction values are 76.1 vol.% alcohol/ultra pure water volume ratio, an extraction temperature of 52.9 ℃ , and an extraction time of 49.6 min. Under these conditions, the theoretical values of the reaction values are L = 45.4, a = -36.8, and b = 45.0 DPPH radical scavenging activity = 30.9%. When the actual experiment was conducted under these optimal extraction conditions and analyzed, the measured values were L = 46.2, a = -36.1, and b = 48.2, and antioxidant capacity = 31.1% with an average error rate of 2.9%.

Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory (Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정)

  • Park, Jin-Woo;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.80-90
    • /
    • 2014
  • The objective of this research is to estimate the stand volume of Pinus koraiensis, by using the investigated volume and the information of remote sensing(RS), in the research forest of Kangwon National University. The average volume of the research forest per hectare was $307.7m^3/ha$ and standard deviation was $168.4m^3/ha$. Before and after carrying out 3 by 3 majority filtering on TM image, eleven indices were extracted each time. Independent variables needed for linear regression equation were selected using mean pixel values by indices. The number of indices were eleven: six Bands(except for thermal Band), NDVI, Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness. As a result, NDVI and TC G were chosen as the most suitable indices for regression before and after filtering, and R-squared was high: 0.736 before filtering, 0.753 after filtering. As a result of error verification for an exact comparison, RMSE before and after filtering was about $69.1m^3/ha$, $67.5m^3/ha$, respectively, and bias was $-12.8m^3/ha$, $9.7m^3/ha$, respectively. Therefore, the regression conducted with filtering was selected as an appropriate model because of low RMSE and bias. The estimated stand volume applying the regression was $160,758m^3$, and the average volume was $314m^3/ha$. This estimation was 1.2 times higher than the actual stand volume of Pinus koraiensis.

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

Relationship between Meteorological Factors and Lint Yield of Monoculture Cotton in Mokpo Area (목포지방 기상요인과 단작목화의 생육 및 섬유수량과의 관계)

  • 박희진;김상곤;정동희;권병선;임준택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.142-149
    • /
    • 1995
  • This study was conducted to investigate the relationships between yearly variation of climatic components and yearly variations of productivity in monoculture cotton. In addition, correlation coefficients among yield and yield components were estimated. The data of yield and yield components from the four varieties(Kinggus, Yongdang local. 113-4, 380) were collected from 1978 to 1992 in Mokpo area. The meteorological data gathered at the Mokpo Weather Station for the same period were used to find out the relationships between climatic components and productivity. Yearly variation of the amount of precipitation and number of stormy days in July are large with coefficients of the variations(C.V)84.89 and 97.05%, respectively, while yearly variation, of the average temperature, maximum temperature, minimum temperature from May to Sep. are relatively small. Seed cotton yield before frost in Sep. and Oct. very greatly with C.V. of 68.77, 78.52%, respectively. Number of boll bearing branches and lint percentage show more or less small in C.V. with 11.77 and 19.13%, respectively and flowering date and boll opening date show still less variation. Correlation coefficients between precipitation in May and number of boll bearing branches, duration of sunshine in July and number of bolls per plant, maximum temperature in July and total seed cotton before the frost in Sep., Oct., and Nov. evaporation in Aug. are positively sig-nificant at the 1% level. There are highly significantly positive correlated relationships among yield(total seed cotton) and yield components. Total seed cotton yield(Y) can be predicted by multiple regression equation with independent variables of climatic factors in July such as monthly averages of average temperature($X_1$), maximum temperature($X_2$) and minimum temperature($X_3$), monthly amount of precipitation ($X_4$), evaporation($X_5$), monthly average of relative humidity($X_6$), monthly hours with sunshine($X_7$) and number of rainy days($X_8$). The equation is estimatedas Y =-1080.8515 + 144.7133$X_1$+15.8722$X_2$ + 164.9367$X_3$ + 0.0802$X_4$ + 0.5932$X_5$ + 11.3373$X_6$ + 3.4683$X_7$- 9.0846$X_8$. Also, total seed cotton yield(Y) can be predicted by the same method with climatic components in Aug., Y =2835.2497 + 57.9134$X_1$ - 46.9055$X_2$ - 41.5886X$_3$ + 1.2559$X_5$ - 21.9687$X_6$ - 3.3763$X_7$- 4.1080$X_8$- 17.5586$X_9$. And the error between observed and theoretical yield were less with approached linear regression.

  • PDF

Estimating Grain Weight and Grain Nitrogen Content with Temperature, Solar Radiation and Growth Traits During Grain-Filling Period in Rice (등숙기 온도 및 일사량과 생육형질을 이용한 벼 종실중 및 종실질소함량 추정)

  • Lee, Chung-Kuen;Kim, Jun-Hwan;Son, Ji-Young;Yoon, Young-Hwan;Seo, Jong-Ho;Kwon, Young-Up;Shin, Jin-Chul;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • This experiment was conducted to construct process models to estimate grain weight (GW) and grain nitrogen content (GN) in rice. A model was developed to describe the dynamic pattern of GW and GN during grain-filling period considering their relationships with temperature, solar radiation and growth traits such as LAI, shoot dry-weight, shoot nitrogen content, grain number during grain filling. Firstly, maximum grain weight (GWmax) and maximum grain nitrogen content (GNmax) equation was formulated in relation to Accumulated effective temperature (AET) ${\times}$ Accumulated radiation (AR) using boundary line analysis. Secondly, GW and GN equation were created by relating the difference between GW and GWmax and the difference between GN and GNmax, respectively, with growth traits. Considering the statistics such as coefficient of determination and relative root mean square of error and number of predictor variables, appropriate models for GW and GN were selected. Model for GW includes GWmax determined by AET ${\times}$ AR, shoot dry weight and grain number per unit land area as predictor variables while model for GN includes GNmax determined by AET ${\times}$ AR, shoot N content and grain number per unit land area. These models could explain the variations of GW and GN caused not only by variations of temperature and solar radiation but also by variations of growth traits due to different sowing date, nitrogen fertilization amount and row spacing with relatively high accuracy.

Estimation of Forest Productivity for Post-Wild-fire Restoration in East Coastal Areas (동해안 산불피해지 복구를 위한 산림생산력의 추정)

  • Koo, Kyo-Sang;Lee, Myung-Jong;Shin, Man-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • In order to rehabilitate forest sites damaged by wildfire via natural or artificial restoration, it is important to determine right tree species, which can acclimate to biogeoclimatic environment at the sites. The objectives of this study were to develop site index equation of different tree species for estimating forest productivity and to provide information on species selection for post-wildfire restoration. Site index equation was developed based on environmental information from wildfire damaged areas in Gangneung, Goseong, Donghae, and Samcheok, where were located in east coastal areas of South Korea. Despite the small numbers (4~5) of environmental variables used for the development of the site index equations, statistical analysis (e.g. mean difference, standard deviation of difference, and standard error of difference) showed relatively low bias and variation, suggesting that those equations can provide relatively high capability of estimation and practical applicability with high effectiveness. The small numbers of the variables enabled the model to be applied in a wide range of usages including determination of appropriate tree species for post-wildfire restoration. The estimation of forest site productivity showed the possibility of large distribution in east coastal region as the best site for Korean ash (Fraxinus rhynchophylla) and original oak (Quercus variabilis) that can be used for firebreak in the region. These results imply that damages by forest fire can be reduced significantly by replacing existing pure coniferous forests in the area with ones dominated by broad-leaved deciduous stands, which can play an important role as fire break and/or prevent a transition from surface fire to crown fire.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model (역전파 신경망 모델을 이용한 기준 작물 증발산량 산정)

  • Kim, Minyoung;Choi, Yonghun;O'Shaughnessy, Susan;Colaizzi, Paul;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.111-121
    • /
    • 2019
  • Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.