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초  록

작물 증발산량은 수자원 계획 및 관리, 물수지 분석, 작물 관개 계획 및 생산량 추정 등에 널리 활용되고 있으며, 특히 FAO에서 공인한 

Penman-Monteith식 (FAO 56-PM)은 잠재 증발산량 산정을 위한 표준방법으로 많이 사용되고 있다. Penman-Monteith식을 이용한 잠재증발산량 

산정은 최소온도, 평균온도, 최대온도, 상대습도, 풍속과 일사량인 6가지 항목에 대한 시계열 자료가 필요한데, 결측 또는 미계측된 경우에는 

사용이 어려운 단점을 가지고 있다. 따라서, 본 연구에서는 역전파 신경망(BPNN) 모델을 이용해서 6개 미만의 기상항목으로도 잠재증발산량

이 추정가능한지를 확인하였다. 여섯 가지 기상항목을 각각 1~6개의 조합으로 입력자료를 구성하고, BPNN 모델을 이용해서 학습, 검증 및 

테스트를 한 결과, 입력 자료가 많아질수록 좋은 결과가 산출되었으며, 일사량, 최대온도와 상대습도만으로도 결정계수(R2)가 0.94정도로 비교

적 높은 예측결과를 얻을 수 있었다. 또한 산정 오차를 줄이고, 항목간의 상관관계를 높이기 위해서는 역전파 신경망 구조의 적절한 선택이 

중요한 것으로 확인되었다. 역전파 신경망 모델을 사용하면 요구되는 기상 항목과 데이터의 양에 대한 제약 없이 예측이 가능할 수 있기 때문

에 기준 증발산량 산정에 유용하게 활용될 수 있을 것이며 향후 작물 재배를 위한 적정 관개계획 수립에도 유용하게 사용될 것이라 사료된다.

주제어: 기준 작물 증발산량; Penman-Monteith식(FAO 56-PM); 역전파 신경망 모델; 기상변수

ABSTRACT

Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic 

water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often 

calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, ETo). The Penman-Monteith 

equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole ETo method. However, its accuracy is 

contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. 

Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating ETo from less meteorological data 

than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative 

humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) 

and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating ETo. The overall findings of this study 

indicated that ETo could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper 

choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and 

independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

Keywords: Reference crop evapotranspiration; Penman-Monteith equation (FAO 56-PM); Backpropagation neural network (BPNN) model; meteorological 

variables
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Ⅰ. INTRODUCTION

Evapotranspiration is one of the hydrologic cycle components 

and combines two distinct processes which are the evaporation 

of water directly from the ground surface and transpiration 

through the plants’ stomata (Allen et al., 2006). Knowledge of 

the reference crop evapotranspiration (ETo) is very important 

in various fields of water resources such as estimation of crop 

water requirements, scheduling of irrigation water application, 

modeling of rainfall-runoff process and evaluation of land 

suitability (Djaman, et al., 2018). Because of its significance, 

various indirect and direct methods have been used to determine 

ETo. 

Direct methods include field measurements using lysimeters 

and pan evaporimeters to quantify evapotranspiration (Parisi et 

al., 2009; Lu et al., 2018), however, these methods are 

time-consuming. Furthermore, time, labor and high skill for data 

collection and communication are required to improve estimates 

and spatial interpolation, which may be inappropriate for 

large-scale studies (Palayasoot, 1965). On the other hand, 

methods using micro-meteorological measurements such as the 

energy balance Bowen ratio and eddy covariance flux 

measurement systems have also been employed to measure 

surface heat fluxes but these are expensive and complex, both 

of which limit their wide applicability (Drexler et al., 2004). 

Due to limitations associated with direct methods, the 

adoption of indirect methods of physical mathematical formulations 

has become a preferred and practical alternative to ETo 

estimation (Allen et al., 2011). ETo is a complex process which 

is dependent on several interacting climatological factors, such 

as temperature, humidity, wind speed and radiation. The lack 

of physical understanding of the ETo process and the 

unavailability of all relevant data results in inaccurate estimation 

of ETo (Vyas and Subbaiah, 2016). Consequently, significant 

research activities have been carried out to develop and/or 

implement reliable and accurate prediction models that use 

observed weather data (air temperature, relative humidity, solar 

radiation and wind speed) as inputs to estimate ETo (Jensen et 

al., 1990; Allen et al., 1998; Jennifer and Sudheer, 2001; George 

et al., 2002; Itenfisu et al., 2003).

The Penman-Monteith equation (FAO 56-PM) is maintained 

as the single standard method recommended by the FAO for 

the computation of ETo from complete meteorological data 

(Smith et al., 1992; Allen et al., 2006). Several models such 

as Hargreaves & Blaney-Criddle and other models have been 

proposed to predict ETo, but Traoré et al. (2008) reported that 

these models do not have universal consensus for different 

climatic conditions. Even though its modeling accuracy is well 

known, the main shortcoming of the FAO 56-PM method is 

its requirement of a large number of meteorological data that 

are not always available in many locations. For this reason, 

numerous attempts have been tried to overcome difficulties 

associated with data availability for ET estimation (Dai et al., 

2009). 

To address this, past studies investigated the application of 

Artificial Neural Networks (ANNs) and assessed their 

performance with limited number of datasets rather than a full 

set of data (minimum, average & maximum air temperature, 

relative humidity, wind speed and solar radiation). ANNs have 

been intensively used in modeling complex nonlinear processes 

(e.g., rainfall-runoff, stream flow, ground water, precipitation 

and evapotranspiration) because they have the ability to map 

the input-output relationships without a complete understanding 

of the physical processes (Choi et al., 2018). Lee et al. (2010) 

showed the good performance of ANNs in estimating future 

reference crop evapotranspiration. Abedi-Koupai et al. (2009) 

evaluated the performance of ANNs with the conventional 

methods (Penman, Penman-Monteith, Stanghellini and Fynn) to 

estimate reference evapotranspiration and they found that the 

efficiency value of ANNs was superior than others. Sudheer 

and Jain (2003) and Zanetti et al. (2007) in their ET estimation 

simplified the neural network inputs to air temperature, 

extraterrestrial solar radiation and daily light hours. Khoob 

(2008) used similar input sets but without the daily light data 

for successfully estimating ET in Iran. 

The objectives of this study were to adopt a Backpropagation 

neural network (BPNN) model to calculate daily ETo from 

different input combinations (minimum, average & maximum 

air temperature, relative humidity, wind speed and solar 

radiation) and to assess the computational performance of ETo 

values between BPNN and Multiple Linear Regression (MLR).

Ⅱ. MATERIALS AND METHODS

1. Description of Study area and Meteorological data 

A total of six meteorological variables were collected from 

a weather station which was located at the experimental station 
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in USDA Agricultural Research Service Conservation and 

Production Research Laboratory, Bushland, Texas, USA (35° 11’ 

N, 102° 6’ W, 1,170 m above MSL) (Fig. 1). Data from periods 

(May – December, 2010, January – December, 2012 and 

January, 2014 – October, 2017) were used and any faulty data 

due to sensor malfunction were deleted. All required data, 

average, minimum and maximum air temperature (Tavg, Tmin and 

Tmax, °C), relative humidity (RH, %), wind speed (WS, m/s) 

and solar radiation (SR, watt/m2), were measured at 6 second 

intervals, reported as 15 minutes mean values from a weather 

station, and then stored in a Datalogger (Campbell Scientific, 

CR3000, Logan, Utah, USA). Sensors used were temperature 

& relative humidity sensor (HC2S3, Rotronic, Hauppauge, New 

York, USA), pyranometer (LI200-RX, LI-COR, Lincoln, 

Nebraska, USA), and wind sentry set (Model 03002-L, R.M. 

Young, Traverse City, Michigan, USA).

Fig. 1 Description of study area

2. Computation of reference crop evapotranspiration 

using the FAO 56-PM equation

The FAO 56-PM equation was developed to quantify the 

amount of water loss from soil surface and plant leaf through 

evaporation and transpiration. This equation accounts for 

aerodynamic as well as physiological parameters and requires 

large data inputs (Tmin, Tavg, Tmax, WS, RH and SR). The 

equation is as follows (Allen et al., 1998):

      (1)

where ETo is reference crop evapotranspiration [mm day-1], Rn 

is net radiation at the crop surface [MJ m-2 day-1], G is soil 

heat flux density [MJ m-2 day-1], T is average daily air 

temperature at 2 m height [°C], u2 is wind speed at 2 m height 

[m s-1], es is saturation vapor pressure [kPa], ea is actual vapor 

pressure [kPa], (es-ea) is saturation vapor pressure deficit [kPa], 

Δ is slope vapor pressure curve [kPa °C-1], and γ is 

Psychrometric constant [kPa °C-1].

The FAO 56-PM equation requires daily data as inputs, 

therefore, all necessary data collected form a weather station 

were converted from every 15 minutes to daily averages (Tmin, 

Tavg, Tmax, RH and WS) and sums (SR) to apply to the FAO 

56-PM equation.

3. Application of BPNN and MLR models

The Multi-Layer Perceptron (MLP), a traditional Artificial 

Neural Network, is known as the common, effective and 

successful neural network architecture which uses a supervised 

learning and technique called Backpropagation (BP) algorithm. 

Backpropagation neural network (BPNN) is by far the most 

popular (Haykin, 1998), performs parallel training for improving 

the efficiency of MLP networks, and derives the network error 

which is fed back into the network model and used to adjust 

the weights (Kecman, 2001; Mia et al., 2015). The MLP 

consists of at least three layers, an input layer, one or more 

hidden layer, and an output layer. Adjustable weights are used 

to connect the nodes between adjacent layers and optimized by 

the training algorithm to obtain the desired results. Through that 

process, the error in prediction decreases with each iteration, 

succeeds when the neural network model reaches the specified 

level of accuracy and produces the desired outputs (Kim et al., 

2008). First of all, this study begun with three layer learning 

network which consists of an input layer, a hidden layer and 

an output layer (Fig. 2), but during the training procedure, more 

than one hidden layers were evaluated to calculate the weighted 

inputs with activation functions to produce the better outputs. 

In designing a robust and accurate ANN model, the modeler 

must address a number of important factors, including the type 

and structure of the neural network, the input prediction 

variables used, and data pre-processing. This was generally 

accomplished through a combination of best professional 

judgment, heuristic rules, and trial & error (Laaboudi et al., 

2012). The governing factors in BPNN includes: a number of 

hidden layers, a number of hidden processing elements (PEs), 

the transfer function (e.g., sigmoid, tan-sigmoid), learning 

algorithm (e.g., Delta, extended DBD) and learning parameters 

(e.g., learning rate, momentum factor, initial weights) (Basheer 
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and Hajmeer, 2000; Maier and Dandy, 2000). Depending on 

the problem being solved, the success of training varies with 

selected factors. 

Fig. 2 A schematic structure of BPNN (one hidden layer)

Among all six variables, its correlative regression with ETo 

was determined. Different combinations of input variables 

(number of combinations) were used in this study, 1, 2, 3, 4, 

5 and 6 variables. The datasets of the following variables Tmin, 

Tavg, Tmax, RH, WS and RS, were used as the inputs and ETo 

was used as the output. They were all daily averaged. Except 

for one individual variable used as an input, the rest of input 

combinations (two, three, four, five and six variables) were 

prepared to match solar radiation, which has the highest 

correlation regression with ETo, with the others, which has the 

relatively high correlations (Table 1). A total of 20 combinations 

(from C1 to C20) were prepared to determine their best network 

configuration and regression equation for BPNN and MLR. In 

further explanation, a combination 1 (C1) to a combination 6 

(C6) has only one variable defined as input and a combination 

7 (C7) to a combination 11 (C11) has two variables as inputs 

as per high correlation with ETo.

To consider ANN modeling valid without manipulating data 

and/or evidence of contradictory results, all data used in this 

study was divided into three sets, one for the training, the other 

for the validation of the trained results, and another for the 

testing of the trained-validated results. A total of 1,633 datasets 

from 2010, 2012, 2014 to 2017 years were used, and 62% of 

data for network training, 8% for validation and 30% for testing 

were assigned, respectively. All meteorological input and output 

variables were standardized in the range of 0 to 1 using the 

Min-Max normalization method (Choi et al., 2018) and then 

partitioned using K-fold cross validation.

There is no established methodology for the selection of 

modeling parameters, such as the appropriate network 

architecture (the number of input, hidden and output layers), 

Processing Elements (PEs) in the hidden layer, the momentum, 

the learning rate, the learning rule and the transfer function in 

BPNN (Choi et al., 2018). Therefore, model convergence was 

based on the error function and exhibited any deviation between 

the predictions taken from corresponding target output values 

as the sum of the squares of the deviations. Training proceeded 

until the error was reduced to a desired minimum threshold. 

The most commonly used stopping criterion for neural network 

training was the sum-of-squared-error (SSE) which is presented 

in Equation (2) (Choi et al., 2018).

No. of variables Combination of Inputs Output

1
(C1) Tmin, (C2) Tavg, (C3) Tmax, (C4) RH, (C5) WS, 

(C6) SR
ETo

2
(C7) SR-RH, (C8) SR-Tavg, (C9) SR-Tmax, (C10) SR-Tmin,

(C11) SR-WS
ETo

3
(C12) SR-Tmax-RH, (C13) SR- Tmax-Tavg, 

(C14) SR-Tmax-Tmin, (C15) SR- Tmax-WS
ETo

4
(C16) SR-Tmax-Tavg-RH, (C17) SR-Tmax-Tavg-Tmin, 

(C18) SR-Tmax- Tavg-WS
ETo

5 (C19) SR-Tmax-Tavg-Tmin-RH ETo

6 (C20) SR-Tmax-Tavg-Tmin-RH-WS ETo

Note: C stands for Combination

Table 1 Different combinations of input variables and its correspondent output variable
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          (2)

where n is the number of output, 

 is the measured output 

and 

 is the predicted output.

A PC-based neural network application software, NeuralWorks 

Professional II/Plus (Neuralworks®, Carnegie, Pennsylvania, 

USA) used in this study, allows users to adjust key network 

and training parameters in BPNN. Modifications are preferred 

to determine the best combination for solving the particular 

problem. Given the number of possible parameter combinations, 

the possibility of finding the correct combination of parameter 

settings, given a random starting point, is unlikely and is based 

primarily on chance (Kim et al., 2008).

MLR techniques can be used to model ETo in terms of the 

local climatological parameters. The general purpose of the 

MLR model is to learn more about the relationship between 

several independent or predictor variables and a dependent or 

criterion variable. In MLR analysis, the values of ETo were used 

as the dependent variable, while each combinations was used 

as independent variables to derive the coefficients in the MLR 

model. The regression equations were generated with the aid 

of Microsoft Excel in this study. 

4. Performance evaluation criteria

The performance of BPNN and MLR models was evaluated 

by comparing their predictive accuracies with the ETo values 

using Microsoft excel. The performance was characterized based 

on the following statistical criteria, which are R2 (coefficient 

of determination), RMSE (root mean square error) and NSE 

(Nash-Sutcliffe efficiency) (Equation 3-5).

              (3)

         (4)

           (5)

where, 

 and 


 represent the FAO 56-PM estimate and its 

average for ith value; 

 and 


 represent the BPNN (MLR) 

computed values and their average for ith value; N represents 

the number of data considered.

Ⅲ. RESULTS AND DISCUSSION

1. Meteorological condition of study area

The study area (Bushland, Texas, USA) has the meteorological 

condition which is categorized as semi-arid and has extremely 

variable precipitation temporally and spatially, which ranges 

from 400 to 560 mm. The area also has high evaporative 

demand, which is approximately 2,500 mm per year based on 

the Class A pan evaporation. This can be explained by high 

solar radiation, high vapor pressure deficit and strong regional 

advection. The monthly meteorological conditions in Bushland 

are plotted in Fig. 3.

Fig. 3 Average meteorological conditions in Bushland

Table 2 presents the maximum, minimum, average and 

standard deviation (S.D.) values of temperature, relative humidity, 

wind speed, solar radiation and ETo for the period of study. 

The multi-year average data for each meteorological variable 

were 17.13 oC (-14.57∼30.85 oC) for Temp., 51.30% (7.40∼

99.92%) for RH, 5.16 m/s (0.31∼9.67 m/s) for WS, 12.22 

MJ/m2/day (0.81∼27.38 MJ/m2/day) for SR and 4.66 mm/day 

(0.20∼8.97 mm/day) for ETo, respectively.

2. Relationship between meteorological variables 

and ETo

Correlations of meteorological variables with ETo are 

presented in Table 3. This table shows that the linear correlation 

between meteorological variables with ETo ranged from 0.161 

to 0.793. SR has the highest correlation with ETo, which was 
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followed by Tmax, Tavg, Tmin, RH and WS. This indicates that 

any BPNN and MLR models that use SR and Tmax and/or Tavg 

as inputs may be able to estimate the ETo to acceptable 

accuracy, depending on the specific application. The model’s 

accuracy can be improved by implementing other variables that 

have aerodynamic effects of ETo, such as RH and WS. 

3. Performance comparison between BPNN and 

MLR models 

There is no established methodology for the selection of the 

appropriate network architecture before training (Coulibaly et 

al., 2001; Jain et al., 2008; Wu et al., 2014). Therefore, this 

study began with evaluating the number of hidden layer and 

PEs in the hidden layer which exhibit non-linear behavior 

between inputs and output. All other computational parameters 

(momentum, learning coefficient ratio, learning rule and transfer 

function) were also determined. The best performance per each 

combination was achieved and listed in Table 4. The trial and 

error procedure per each combination (C1 through C20) showed 

that just one hidden layer worked best and the number of PEs 

in the hidden layer ranged from 3 to 9. The best choice of 

momentum and learning rate are problem dependent and need 

some trial-and-error before good choices are found. In this 

study, the momentum that was used to modify the current 

Year
Temp.

(oC)

RH

(%)

WS

(m/s)

SR

(MJ/m2/day)

ETo

(mm/day)

2010 Max 29.936 92.174 6.516 17.217 8.865

Min 11.789 35.877 1.888 0.805 0.866

Average 22.964 59.716 3.900 12.746 5.269

S.D. 3.965 12.564 1.158 3.124 1.531

2012 Max 30.847 93.288 8.963 18.798 8.966

Min -8.781 13.775 1.542 1.578 0.309

Average 15.278 49.217 4.230 11.494 4.601

S.D. 9.316 17.025 1.500 4.159 2.310

2014 Max 29.012 91.067 9.670 18.438 8.708

Min -14.573 9.671 1.017 1.344 0.384

Average 13.732 53.755 4.354 10.935 4.260

S.D. 9.853 18.093 1.492 4.309 2.222

2015 Max 28.881 99.841 9.674 17.364 8.612

Min -9.758 25.232 0.315 0.921 0.203

Average 13.315 64.069 5.021 9.751 3.925

S.D. 9.215 15.763 1.494 4.151 2.228

2016 Max 30.728 99.922 9.504 17.683 7.322

Min -12.910 22.692 1.338 0.969 0.224

Average 15.154 58.286 5.352 10.954 2.205

S.D. 9.391 16.803 1.617 6.944 1.338

2017 Max 29.474 76.792 9.454 27.381 8.641

Min 7.397 7.396 7.399 5.751 6.223

Average 22.331 22.764 8.119 17.465 7.671

S.D. 4.144 6.526 1.158 3.345 0.828

Table 2 Statistical parameters of daily meteorological variables in study area

Tmin Tmax Tavg WS RH SR ETo

Tmin 1

Tmax 0.859 1

Tavg 0.949 0.965 1

WS -0.047 -0.043 -0.045 1

RH 0.017 -0.298 -0.174 -0.073 1

SR 0.592 0.754 0.724 -0.032 -0.417 1

ETo 0.626 0.783 0.751 0.161 -0.540 0.793 1

Table 3 Correlative regression between inputs and output for matching input combinations
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direction of computational movement in weight space based on 

previous changes was consistent as 0.4 for all combinations. 

Most combinations except for C12 showed that the learning rate 

of 0.5 produced the best results, which indicates that no single 

value of learning rate was optimal for all combinations. The 

number of iterations was also considered one of the influencing 

factors on model performance and the preliminary test showed 

that more than 50,000 iterations did not improve the model 

accuracy (data not known). Instead of listing all twenty 

combinations, only the best performing combination per each 

group (same number of input variables used) is shown in Table 

4, for example, C3 was the best performing combination among 

C1 through C6.

Our analyses with ETo revealed that the performance criteria 

for the best BPNN model had the architecture of 6-1-1, which 

had one input layer of 6 neurons, one hidden layer of 1 neuron 

and one output layer of 1 neuron. The momentum and learning 

rate were initially set to 0.1 and 0.1, respectively. However, 

they were manipulated at 10 levels (increasing/decreasing 

by 0.1 from 0.0 to 1.0) in an effort to find the best configuration 

(0.4 of momentum and 0.3, 0.5 of learning rate). The optimal 

momentum and learning rate were finally determined to be 

Combination Input variables
No. of 

hidden layer

PEs of 

hidden layer
Momentum

Learning 

rate
Learning rule

Transfer 

function

C3 Tmax 1 3 0.4 0.5 Norm-Cum-Del Sine

C9 SR-Tmax 1 4 0.4 0.5 Delta Tanh

C12 SR-Tmax-RH 1 7 0.4 0.3 Norm-Cum-Del Tanh

C16 SR-Tmax-Tavg-RH 1 4 0.4 0.5 Delta Tanh

C19 SR-Tmax-Tavg-Tmin-RH 1 9 0.4 0.5 Ext DBD Tanh

C20 SR-Tmax-Tavg-Tmin-RH-WS 1 9 0.4 0.5 Delta Tanh

Table 4 Best architecture of BPNN and its computational parameters

Fig. 4 Scattering diagrams of ETo estimated by BPNN and FAO 56-PM during the testing periods depending upon the combination of input
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0.4 and 0.3(0.5) depending upon input combinations. In 

addition, the learning rules were varied, but the transfer function 

of hyperbolic tangent (Tanh) was superior to other functions.

The ability of BPNN modeling to predict daily ETo values 

using different combination of input variables was examined 

and their results are shown in Fig. 4. This figure only shows 

the case with the best modeling result per each BPNN modeling 

with different combination of input variables. Differently from 

the correlative regression results, the maximum air temperature 

had the greatest influence on ETo estimation when only one 

input variable was used for simulation. However, in the 

combinations with more than two input variables, SR showed 

the largest influence on model accuracy. The BPNN model 

underestimated and overestimated ETo at higher and smaller 

values, respectively, which may have resulted from diminished 

sensitivity of training to the more extreme ETo values. Even 

under this limitation, R2 values ranged from 0.79 to 0.98. 

In this study, the same training and validation datasets with 

BPNN modeling were used in generating the MLR equations 

and computing the coefficient of determination at a significance 

level of 5% between the FAO 56-PM and MLR equations 

(Table 5). The smallest discrepancies between ETo calculated 

by BPNN and ETo calculated by the FAO 56-PM equation were 

achieved from C3, C9, C12, C16, C19 and C20 with 1, 2, 3, 4, 

5 and 6 combination of input variables, respectively.

Fig. 5 shows the statistical comparison between BPNN and 

MLR models depending upon different combination of input 

variables. The values of R2, RMSE and NSE from BPNN 

modeling ranged from 0.786 to 0.978, from 0.005 to 0.091 (mm 

d-1), and from 0.746 to 0.948, respectively. In combination of 

MLR modeling, values of R2, RMSE and NSE were from 0.738 

to 0.925, from 0.049 to 0.100 (mm d-1) and 0.691 to 0.925, 

respectively. This result showed that BPNN has a better 

performance than MLR, and both models indicate that no more 

than three input variables (Tmax, SR, RH) would improve the 

accuracy. 

Ⅳ. CONCLUSIONS

Reference crop evapotranspiration (ETo) plays a major role 

Fig. 5 Statistical comparison of model performance by BPNN and MLR

Combination Equation R2

C3 Y=-0.168+0.805X1, where X1=Tmax 0.738

C9 Y=-0.155+0.406X1+0.443X2, where X1=Tmax, X2=SR 0.807

C12 Y=0.026+0.443X1-0.272X2+0.333X3, where X1=Tmax, X2=RH, X3=SR 0.876

C16

Y=0.093-0.073X1+0.492X2-0.342X3+0.318X4, 

where X1=Tmax, X2=Tavg, X3=RH, X4=SR
0.899

C19

Y=0.061+0.107X1-0.019X2+0.364X3-0.348X4+0.323X5,

where X1=Tmin, X2=Tmax, X3=Tavg, X4= RH, X5=SR
0.899

C20

Y=-0.102+0.097X1+0.031X2+0.338X3+0.349X4-0.318X5+0.323X6, 

where X1=Tmin, X2=Tmax, X3=Tavg, X4=WS, X5=RH, X6=SR
0.925

Table 5 Multiple Linear Regression equations per best combination
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in the agricultural management of water resources and its 

accurate prediction would signify better planning and 

management of the resources. Due to limitations of the FAO 

56-PM equation, ANN modeling with BP algorithm was 

proposed as an alternative in this study to calculate ETo. 

A total of twenty combinations with different combination 

of input variables were carefully selected and tested with ETo 

as an output. Both BPNN and MLR modeling provided the best 

results in ETo estimation using all meteorological variables as 

inputs, which was consistent with a study by Goel (2009) and 

Benzaghta et al. (2012) indicating that a combination of all input 

parameters provides better performance of the ANN model in 

estimating the ETo rather than individual parameters. However, 

this study found that even three most crucial inputs, Tmax, RH 

and SR, when used in both BPNN and MLR models to 

accurately estimate ETo. This result was consistent with a study 

by Laaboudi et al. (2012). They were able to improve the 

temperature-based accuracy of a model using incomplete 

meteorological variables (air temperature, wind velocity and 

relative humidity) with the proper choice of ANN architecture. 

Also, they found that the temperature-based accuracy on ETo 

estimation was improved by incorporating with wind velocity 

and relative humidity as the network input datasets.

A study by Landeras et al. (2008) compared between ANNs 

and alternative evapotranspiration equations with lower input 

requirements to the FAO 56-PM equation. They found that 

ANNs based on the same inputs, as those required for the 

application of the FAO 56-PM equations with or without solar 

radiation or relative humidity, gave a better performance than 

their analogous linear calibrated equations (the FAO 56-PM 

based equation with estimated solar radiation and/or relative 

humidity). 

However, it should be noted that the correlation between ETo 

and meteorological variables could be different over regions, 

which means that the highest and lowest correlations with ETo 

were SR and WS in this study, but it could be different in other 

area. This indicates that it should include more data to train, 

validate and test BPNN to function as a universal model.

Overall, this study showed that the possibility of estimating 

ETo with lesser number of meteorological variables as inputs 

and could provide valuable information on irrigation scheduling 

in an easily accessible way. 
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