Browse > Article
http://dx.doi.org/10.5389/KSAE.2019.61.6.111

Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model  

Kim, Minyoung (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Choi, Yonghun (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
O'Shaughnessy, Susan (Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service (USDA-ARS))
Colaizzi, Paul (Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service (USDA-ARS))
Kim, Youngjin (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Jeon, Jonggil (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Lee, Sangbong (Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA))
Publication Information
Journal of The Korean Society of Agricultural Engineers / v.61, no.6, 2019 , pp. 111-121 More about this Journal
Abstract
Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologic water balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is often calculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, $ET_o$). The Penman-Monteith equation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole $ET_o$ method. However, its accuracy is contingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating $ET_o$ from less meteorological data than required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relative humidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables) and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating $ET_o$. The overall findings of this study indicated that $ET_o$ could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the proper choice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent and independent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.
Keywords
Reference crop evapotranspiration; Penman-Monteith equation (FAO 56-PM); Backpropagation neural network (BPNN) model; meteorological variables;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abedi-Koupai, J., M. J. Amiri, and S. Eslamian, 2009. Comparison of artificial neural network and physically-based models for estimating of reference evapotranspiration in greenhouse. Australian Journal of Basic and Applied Sciences 3(3): 2528-2535.
2 Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, No 56, FAO, Rome.
3 Allen, R. G., W. O. Pruitt, J. L. Wright, T. A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J. B. Yrisarry, M. Smith, L. S. Pereira, D. Raes, A. Perrier, A. Alves, I. Walter, and R. Elliot, 2006. A recommendation on standardized surface resistance for hourly calculation of reference $ET_o$ by the FAO 56 Penman-Monteith method. Agricultural Water Management 81(1-2): 1-22.   DOI
4 Coulibaly, P., F. Anctil, R. Aravena, B. Bobee, 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37(4): 885-896. doi:10.1029/2000WR900368.   DOI
5 Dai, X., H. Shi, Y. Li, Z. Ouyang, and Z. Huo, 2009. Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes 23: 442-450. doi:10.1002/hyp.7153.   DOI
6 Djman, K., K. Lombard, K. Komlan, and S. Allen, 2018. Variability of the ratio of alfalfa to grass reference evapotranspiration under semiarid climate. Irrigation & Drainage Systems Engineering 7(204): 1-6. doi:10.4172/2168-9768.1000204.
7 Drexler, J. Z., R. L. Snyder, D. Spano, and U. K. T. Paw, 2004. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes 18(11): 2071-2101. doi:10.1002/hyp.1462.   DOI
8 Jensen, M. E., R. D. Burman, and R. G. Allen, 1990. Crop and irrigation water requirements. Manual and Reports on Engineering Practice No. 70, ASCE, New York.
9 Jain S. K., A Sarkar, and V. Garg, 2008. Impact of declining trend of flow on Harike Wetland, India. Water Resources Management 22(4): 409-421. doi:10.1007/s11269-007-9169-9.   DOI
10 Jennifer, M. J., and R. S. Sudheer, 2001. Evaluation of reference evapotranspiration methodologies and AFSIRS crop water use simulation model. Final report, Division of Water Supply Management, St. Johns River Water Manag, Dist., Palatka, Florida.
11 Kecman, V., 2001. Learning and soft computing. London, England: MIT press.
12 Khoob, A. R., 2008. Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrigation Sci. 26(3): 253-259. doi:10.1007/s00271-007-0090-z.   DOI
13 Benzaghta, M. A., T. A. Mohammed, and A. I. Ekhmaj, 2012. Prediction of evaporation from Algardabiya reservoir. Libyan Agriculture Research Center Journal International 3: 120-128. doi:10.5829/idosi.larcji.2012.3.3.1205.
14 Parisi, S., L. Mariani, G. Cola, and T. Maggiore, 2009. Mini-lysimeters evapotranspiration measurements on suburban environment. Italian Journal of Agrometeorologoy 3: 13-16.
15 Smith, M., R. G., Allen, J. L. Monteith, A. Perrier, L. Pereira, and A. Segeren, 1992. Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements. UN-FAO, Rome, Italy, 54p.
16 Sudheer, K. P., and S. K. Jain, 2003. Radial basis function neural networks for modeling stage discharge relationship. J. Hydrol. Eng. 8(3): 161-164.   DOI
17 Allen, R. G., L. S. Pereira, T. A. Howell, and M. E. Jensen, 2011. Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management 98: 921-929   DOI
18 Basheer I. A., and M. Hajmeer, 2000. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 43(1): 3-31.   DOI
19 Choi, Y., M. Kim, S. O'Shaughnessy, J. Jeon, Y. Kim, and W. Song, 2018. Comparison of artificial neural network and empirical models to determine daily reference evapotranspiration. Journal of the Korean Society of Agricultural Engineers 60(6): 43-54. doi:10.5389/KSAE.2018.60.6.043.   DOI
20 George, B. A., B. R. S. Reddy, N. Raghuwanshi, and W. W. Wallender, 2002. Decision support system for estimating reference evapotranspiration. Journal of Irrigation and Drainage Engineering 128(1): 1-10. doi:10.106/ASCE.0733-9437.   DOI
21 Goel, A., 2009. ANN based modeling for prediction of evaporation in reservoirs (Research Note). International Journal of Engineering, Transactions A: Basics 22(4): 351-358.
22 Haykin, S., 1998. Neural networks: A comprehensive foundation. Prentice-Hall, Englewood Cliffs.
23 Itenfisu, D., R. L. Elliott, R. G. Allen, and I. A. Walter, 2003. Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort. Journal of Irrigation and Drainage Engineering 129(6): 440-448. doi:10.1061/ASCE. 0733-9437.   DOI
24 Zanetti, S. S., E. F. Sousa, V. P. S. Oliveira, F. T. Almeida, and S. Bernardo, 2007. Estimating evapotranspiration using artificial neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering 133(2): 83-89. doi:10.1061/(ASCE)0733-9437(2002)128:4(224).   DOI
25 Kim, M., C. Y. Choi, and C. P. Gerba, 2008. Source tracking of microbial intrusion in water system using artificial neural networks. Water Research 42(4-5): 1308-1314. doi:10.1016/j.watres.2007.09.032.   DOI
26 Laaboudi A., B. Mouhouche, and B. Draoui, 2012. Conceptual reference evapotranspiration models for different time steps. Journal of Petroleum & Environmental Biotechnology 3(4): 1-8. doi:10.4172/2157-7463.1000123.
27 Landeras G., A. Ortiz-Barredo, and J. J. Lopez, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management 95: 553-565. doi:10.1016/k/agwat/2007.12.011.   DOI
28 Traore, A., H. H. Tamboura, A. Kabore, L.J. Royo, I. Fernandez, I. Alvarez, M. Sangare, D. Bouchel, J. P. Poivey, L. Sawadogo, and F. Goyache, 2008. Multivariate analyses on morphological traits in Burkina Faso goat. Arch Anim Breed 51: 588-600. doi:10.1016/j.smallrumres.2008.09.011.   DOI
29 Vyas, K. N., and R. Subbaiah, 2016. Application of artificial neural network approach for estimating reference evapotranspiration. Current World Environment 11(2): 637-647. doi:10.12944/CWE.11.2.36.   DOI
30 Wu, W., G. C. Dandy, and H. R. Maier, 2014. Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modeling. Environ. Model. Softw. 54: 108-127. doi:10.1016/j.envsoft.2013.12.016.   DOI
31 Mia, M. M., S. K. Biswas, and M. C. Urmi, 2015. An algorithm for training multilayer perceptron (MLP) For image reconstruction using neural network without overfitting. IJSTR 10: 271-275.
32 Lee, E. J., M. S. Kang, J. A. Park, J. Y. Choi, and S. W. Park, 2010, Estimation of future reference crop evapotranspiration using artificial neural networks. Journal of the Korean Society of Agricultural Engineers 52(5): 1-9. doi:10.5389/KSAE.2010.52.5.001.   DOI
33 Lu, Y., D. Ma, X. Chen, and J. Zhang, 2018, A simple method for estimating field crop evapotranspiration from Pot Experiments. Water 10: 1-19. doi:10.3390/210121823.   DOI
34 Maier, H. R., and G. C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Model. Software 15: 101-124. doi:10.1016/S1364-8152(99)00007-9.   DOI
35 Palayasoot, P., 1965. Estimation of pan evaporation and potential evapotranspiration of rice in the central plain of Thailand by using various formulas based on climatological data. M. S. Thesis, College of Engineering, Utah State University, Logan.