• Title/Summary/Keyword: Error Ellipsoid

Search Result 22, Processing Time 0.023 seconds

Development of the Calibration Algorithm of 3 Axis Vector Sensor Using Ellipsoid (타원체를 이용한 3축 센서의 실시간 보정 알고리듬 개발)

  • Hwang, Jung Moon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.643-651
    • /
    • 2015
  • Multi-axis magnetic and accelerometer sensor are widely used in consumer product such as smart phones. The vector output of multi-axis sensors have errors on each axis such as offset error, scale error, non-orthogonality. These errors cause many problems on the performance of the applications. In this paper, we designed the effective inline compensation algorithm for calibrating of 3 axis sensors using ellipsoid for mass production of multi-axis sensors. The outputs with those kinds of errors can be modeled by ellipsoid, and the proposed algorithm makes sequential mappings of the virtual ellipsoid to perfect sphere which is calibrated function of the sensor on three-dimensional space. The proposed calibrating process composed of four main stages and is very straightforward and effective. In addition, another imperfection of the sensor such as the drift from temperature can be easily inserted in each mapping stage. Numerical simulation and experimental results shows great performance of the proposed compensation algorithm.

Human Gender and Motion Analysis with Ellipsoid and Logistic Regression Method

  • Ansari, Md Israfil;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.9-12
    • /
    • 2016
  • This paper is concerned with the effective and efficient identification of the gender and motion of humans. Tracking this nonverbal behavior is useful for providing clues about the interaction of different types of people and their exact motion. This system can also be useful for security in different places or for monitoring patients in hospital and many more applications. Here we describe a novel method of determining identity using machine learning with Microsoft Kinect. This method minimizes the fitting or overlapping error between an ellipsoid based skeleton.

A Study on the Errors In the Free-Gyro Positioning System (I)

  • Jeong Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.7
    • /
    • pp.611-614
    • /
    • 2005
  • This paper is to develop the position error equation of in the free-gyro positioning system by using two free gyros. First, the determination of a position is analyzed on the ellipsoid of the Earth and the type of the errors is defined Finally the position error equation is introduced and developed, based on the definition of the type of errors which may be involved in the FPS.

Comparisons of Position Error Characteristics and DOP Between TOA and TDOA Technique (TOA기법과 TDOA기법의 위치 오차 특성 및 DOP 비교)

  • Shin, Dong-Ho;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.923-927
    • /
    • 2000
  • This paper presents a relationship between DOP for TOA and TDOA is defined using the error covariance matrix of TDOA. It is analytically shown that the error ellipsoid of TOA is as same as that of TDOA in magnitude and in orientation, which means that DOP for TOA is identical to the DOP for TDOA. By computer simulation, the positioning performance of two methods is compared, and we verify our assertion.

  • PDF

Optimal Optical Mouse Array for High Performance Mobile Robot Velocity Estimation (이동로봇 속도 추정 성능 향상을 위한 광 마우스의 최적 배열)

  • Kim, Sungbok;Kim, Hyunbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.555-562
    • /
    • 2013
  • This paper presents the optimal array of optical mice for the accurate velocity estimation of a mobile robot. It is assumed that there can be some restriction on the installation of two or more optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is derived, which maps the velocity of a mobile robot to the velocities of optical mice. Second, taking into account the consistency in physical units, the uncertainty ellipsoid is obtained to represent the error characteristics of the mobile robot velocity estimation owing to noisy optical mouse measurements. Third, a simple but effective performance index is defined as the inverse of the volume of the uncertainty ellipsoid, which can be used for the optimization of the optimal optical mouse placement. Fourth, simulation results for the optimal placement of three optical mice within a given elliptical region are given.

Accuracy of Mid Point Computation for Boundary Delimitation on Ellipsoid (타원체상에서 경계획선을 위한 중간점계산의 정확도)

  • 김병국;이종기;김정기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.365-372
    • /
    • 2001
  • The general rule of boundary delimitation is a the principle of equidistant. The principle of equidistant is a method that determine boundary delimitation from fixed distant of baseline or basepoint. In this paper, study Two-Point Algorithm and Three-Point Algorithm that are widely used. and developed the Boundary Delimitation Program to verify the result and error. This program is specially useful for maritime boundary delimitation problem because there is no artificial and natural object in sea to determine boundary. As a result The mid-points computed on Ellipsoid have small error rather than mid-points on plane or sphere without any distortion by map projection. Through developing boundary delimitation program, can eliminate the various manipulation error using paper map, and quickly cope with maritime boundary delimitation negotiation. Also, verify that the error of basepoint in baseline is propagate the mid-point in mid-line, and determine suitable reference plane.

  • PDF

Rate Capability of LiFePO4 Cathodes and the Shape Engineering of Their Anisotropic Crystallites

  • Alexander, Bobyl;Sang-Сheol, Nam;Jung-Hoon, Song;Alexander, Ivanishchev;Arseni, Ushakov
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.438-452
    • /
    • 2022
  • For cuboid and ellipsoid crystallites of LiFePO4 powders, by X-ray diffraction (XRD) and microscopic (TEM) studies, it is possible to determine the anisotropic parameters of the crystallite size distribution functions. These parameters were used to describe the cathode rate capability within the model of averaging the diffusion coefficient D over the length of the crystallite columns along the [010] direction. A LiFePO4 powder was chosen for testing the developed model, consisting of big cuboid and small ellipsoid crystallites (close to them). When analyzing the parts of big and small rate capabilities, the fitting values D = 2.1 and 0.3 nm2/s were obtained for cuboids and ellipsoids, respectively. When analyzing the results of cyclic voltammetry using the Randles-Sevcik equation and the total area of projections of electrode crystallites on their (010) plane, slightly different values were obtained, D = 0.9 ± 0.15 and 0.5 ± 0.15 nm2/s, respectively. We believe that these inconsistencies can be considered quite acceptable, since both methods of determining D have obvious sources of error. However, the developed method has a clearly lower systematic error due to the ability to actually take into account the shape and statistics of crystallites, and it is also useful for improving the accuracy of the Randles-Sevcik equation. It has also been demonstrated that the shape engineering of crystallites, among other tasks, can increase the cathode capacity by 15% by increasing their size correlation coefficients.

Prediction of Communication Outage Period between Satellite and Earth station Due to Sun Interference

  • Song, Yong-Jun;Kim, Kap-Sung;Jin, Ho;Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.31-42
    • /
    • 2010
  • We developed a computer program to predict solar interference period. To calculate Sun's position, we used DE406 ephemerides and Earth ellipsoid model. The Sun's position error is smaller than 10arcsec. For the verification of the calculation, we used TU media ground station on Seongsu-dong, and MBSAT geostationary communication satellite. We analysis errors, due to satellite perturbation and antenna align. The time error due to antenna align has -35 to +16 seconds at $0.1^{\circ}$, and -27 to +41 seconds at $0.25^{\circ}$. The time errors derived by satellite perturbation has 30 to 60 seconds.

Robust Stabilization of Decentralized Dynamic Surface Control for a Class of Interconnected Nonlinear Systems

  • Song, Bong-Sob
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • The analysis and design method for achieving robust stabilization of Decentralized Dynamic Surface Control (DDSC) is presented for a class of interconnected nonlinear systems. While a centralized design approach of DSC was developed in [1], the decentralized approach to deal with large-scale interconnected systems is proposed under the assumption that interconnected functions among subsystems are unknown but bounded. To provide a closed-loop form with provable stability properties, augmented error dynamics for N nonlinear subsystems with DDSC are derived. Then, the reachable set for errors of the closed-loop systems will be approximated numerically in the form of an ellipsoid in the framework of convex optimization. Finally, a numerical algorithm to calculate the $L_2$ gain of the augmented error dynamics is presented.

A Study on the East-West Station Keeping Box of Koreasat 2 (무궁화위성 2호의 동서위치유지 박스 설정에 관한 연구)

  • Lee,Sang-Cheol;Kim,Bang-Yeop;Park,Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.75-81
    • /
    • 2003
  • The longitude and latitude of a geosynchronous satellite are not defined as a point in space because of various external perturbations. To perform the missions of a satellite for a communication and broadcasting, the satellite must be positioned within a predefined station keeping box in given limited space longitude. In this study, we propose east-west station keeping box larger than that of north-south station. By using the derived error equation, we verified the Koreasat station keeping box allocation by assuming one week and two weeks of station keeping cycle.