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Abstract

We developed a computer program to predict solar interference period. To calculate
Sun‘s position, we used DE406 ephemerides and Earth ellipsoid model. The Sun‘s
position error is smaller than 10arcsec. For the verification of the calculation, we used
TU media ground station on Seongsu-dong, and MBSAT geostationary communica-
tion satellite. We analysis errors, due to satellite perturbation and antenna align. The
time error due to antenna align has -35 to +16 seconds at0.1◦, and -27 to +41 seconds
at0.25◦. The time errors derived by satellite perturbation has 30 to 60 seconds.
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1. Introduction

Geostationary satellites are located at an altitude of approximately 35,786km above the equator,
and revolve in the same angular velocity as earth. Geostationary satellites can therefore, commu-
nicate with a ground earth station at all times. However, geostationary satellites also experience
communication failure time, twice a year, closely one upon the other in spring and autumn quarters.
The communication errors occur when ground station-satellite-the Sun are aligned closely, which
occurs during spring and fall equinoxes. At such times, thermal noise emitted from the Sun’s sur-
face hits the rear side of the satellite and flows directly into the earth station antenna. This is called
solar interference. Studies on duration calculation methods and prediction results of a solar inter-
ference phenomenon were implemented by many scientists (Vuong & Forsey 1983, Mohamadi &
Lyon 1988, Lin & Yang 1989) abroad, and also by Lee et al. (1991) in Korea. To calculate the time
of solar interference, information on precise position of the Sun and earth station antenna systems is
necessary. Previous researches used the formula of Van Flandern (Van Flandern & Pulkkinen 1979)
when calculating the Sun’s position, but it has position error of about 1 arcmin. Using the precise
ephemeris DE406, which published by NASA/JPL and the earth ellipsoid model, the study calcu-
lated the precise positioning of the Sun as causing error within 10 arcsec. For the verification of the
calculation, we used TU media ground station located in Seongsu-dong and the MBSAT satellite
operated by TU media.

†corresponding author

31



32 Song et al.

2. Calculation method for coordinates of the Sun

2.1. DE406
In order to obtain the coordinates of celestial bodies belong to the solar system, the equation of

motion of the entire solar system should be solved, and relative equations of motion of solar system
bodies used in DE406 is shown in formula (1). (Standish et al. 1992)
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Here,ri, ṙi and r̈i represent location, speed and acceleration of the celestial bodyi in the solar-
system barycentric coordinate.µj = Gmj , whereG is gravitational constant,mj is mass of celestial
bodyj. Moreover,β, γ are PPN (Parameterized Post-Newtonian) parameters andγ = β = 1.

DE406 solves Formula (1) numerically; obtained the computed value by fitting, using Cheby-
shev polynomial (Newhall 1989), and saved the coefficients in 64 days interval.

The recursion formula of Chebyshev polynomial can be displayed as shown in formula (2).

Tn(t) = 2tTn−1(t)− Tn−2(t) (2)

Here,n refers to the number of Chebyshev coefficients of the respective celestial body saved in
DE406; 12 of them are for the Sun, and 9 for earth. Using such coefficients and formula (2), we can
obtainf(t) - the value of function from specific timet - as shown in formula (3) below (Press et
al. 2002).

f(t) =
N∑

n=0

anTn(t) : −1 ≤ t ≤ 1 (3)

an shown in formula (3) is the Chebyshev coefficient saved in DE406, andf(t), calculated from
here, and is the position coordinate of the celestial body displayed in BCRS (Barycentric Celestial
Reference System). Suppose we put geocentric-heliocentric position vectors to r in BCRS, which
is calculated through DE406, to demonstrate the coordinates of the Sun viewed from a geocentric
position, the vectors should be conversed to GCRS -Geocentric Celestial Reference System- using
the Bias MatrixB and Precession MatrixP, which are similar to formulas (4) and (5) as follows. At
this time, the position vector of the Sun viewed from geocentric is placed tor′. The Bias Matrix car-
ries out a role to change BCRS to J2000.0 coordinate system, while the Precession Matrix calibrates
celestial bodies of the current time in accordance with precession. The Bias Matrix and Precession
Matrix can be obtained through Astronomical Almanac 2008 (USNO & HMNAO 2008).

B =




0.9999999999999942 −0.0000000707827974 0.0000000805621715
0.0000000707827948 0.9999999999999969 0.0000000330604145
−0.0000000805621738 −0.0000000330604088 0.9999999999999962


 (4)
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P =

(
cos ζA cos θA cos zA − sin ζA sin zA − sin ζA cos θA cos zA − cos ζA sin zA − sin θA cos zA

cos ζA cos θA sin zA + sin ζA cos zA − sin ζA cos θA sin zA + cos ζA cos zA − sin θA sin zA

cos ζA sin θA − sin ζA sin θA cos θA

)

(5)

ζA = + 2′′.5976176 + 2306′′.0809506T + 0′′.3019015T 2 + 0′′.0179663T 3

− 32′′.7× 10−6T 4 − 0′′.2× 10−6T 5 (6)

zA =− 2′′.5976176 + 2306′′.0803226T + 1′′.0947790T 2 + 0′′.0182273T 3

+ 47′′.0× 10−6T 4 − 0′′.3× 10−6T 5 (7)

θA = + 2004′′.1917476T − 0′′.4269353T 2 − 0′′.0418251T 3 − 60′′.1× 10−6T 4

− 0′′.1× 10−6T 5 (8)

T = (JDTT − 2451545.0)/365.25 : Julian Century (9)

where,ζA, zA, θA demonstrate precession angle (Lieske et al. 1977).JDTT is JD (Julian Date),
calculated through TT (Terrestrial Time). The distance between center of the Earth and the Sun,r′

calculated finally from GCRS is shown in formula (10).

r′ = PBr (10)

Since the vector is shown as three-dimensional Cartesian coordinate, semi diameter of the actual
Sun as viewed from the earth can be calculated using formula (11) (Meeus 1998).

αs =
s0

∆
(11)

where,s0 is semidiameter of the Sun from the distance 1 AU apart, set to959′′.63, and∆ is actual
distance between the Earth and the Sun, same to|r′|.

2.2 Earth Ellipsoid Model
Suppose we are to display the positionRe of observers positioned at geographical coordinate

(le, φ), altitude above the sea levelh, and local sidereal time H using a geocentric coordinate system,
we can illustrate as follows via an earth ellipsoid model as shown in Figure 1 (Kim 2005).

tan L = (1− e2)−1/2 v

u
: Circle− Ellipse Relations (12)

tan φ = −du

dv
: Relation between normal line and Geoid latitude (13)

du/dv = −(1− e2)−1(v/u) : Elliptic differentiation (14)

where,L is the latitude measured in the geocentric assuming earth is perfect round,φ is the Geoid
latitude, representing observer latitude from earth ellipsoid.u, v is the coordinate of equatorial in the
observer position and the coordinate to pole-ward located at the earth ellipsoid deemed the Geoids
latitudeφ. Using formula (12)∼(14), we can obtain formula (15) as follows.

tanL = (1− e2)1/2 tan φ =
(1− e2)1/2 sin φ

cosφ
(15)
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Figure 1. The observer position of geodetic latitudeφ and altitude above sea levelh, which is illustrated in an
earth ellipsoid model.

Formula (16) is obtained when cosL and sinL is calculated using the Pythagorean Theorem
and formula (15).

cosL =
cos φ

(1− e2 sin2 φ)1/2

sin L =
(1− e2)1/2 sinφ

(1− e2 sin2 φ)
(16)

Therefore, using formula (16), the observer position of altitude above sea levelh,

u = re cos L + h cosφ =
[

re

(1− e2 sin2 φ)1/2
+ h

]
cosφ (17)

v = (1− e2)1/2re sin L + h sin φ =
[

re(1− e2)
(1− e2 sin2 φ)1/2

+ h

]
sin φ (18)

where,re is the length of earth radius assuming earth is a complete sphere, and the length is the same
as the equatorial radius of actual earth. The position vectorRe, which successes observers located
at altitude above sea levelh and in the center of the earth ellipsoid of which eccentricity ise, can be
displayed as formula (19) as follows.

Re = u cosHi + u sinHj + vk (19)

As shown in Figure 2, we can illustrate formula (20) suppose we calculate the position vector
ρ from observation place to the Sun, using the vectorr′, which is the distance between the Sun and
center of the earth, and observer postion vectorRe.

ρ = r′ −Re = (r′x − u cosH)i + (r′y − u sinH)j + (r′z − v)k = ρii + ρjj + ρkk (20)
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Figure 2. Observer-centric horizon coordinate system and the Earth-centric equatorial coordinate system.

As the vectorρ displayed in three-dimensional geocentric Cartesian coordination, coordinate
conversion is required for the 3-axis H and 2-axis (π/2 − φ) direction. This can be illustrated in
coordinate transformation matrix as shown in formula (14).




ρs

ρe

ρz


 =




cos(π/2− φ) 0 − sin(π/2− φ)
0 1 0

sin(π/2− φ) 0 cos(π/2− φ)







cos H sin H 0
− sin H cos H 0

0 0 1






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
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=




ρi cosH cos(π/2− φ) + ρj sinH cos(π/2− φ) + ρk(− sin(π/2− φ))
ρi(− sin H) + ρj cos H

ρi cosH sin(π/2− φ) + ρj sin H sin(π/2− φ) + ρk cos(π/2− φ)


 (21)

If the vectorρ is conversed to spherical coordinate, we can obtain the azimuth angle and the al-
titude of the Sun from an observation place. In addition, we calculate an off-axis angle (θ0) between
the position of a satellite and the current position of the Sun as formula (22), it is feasible via cosine
law of spherical triangle (Lee et al. 1991).

θ0 = arccos[cos(Elsun) cos(Elant) cos(Azsun −Azant) + sin(Elsun) sin(Elant)] (22)

where,Elsun is elevation angle of the Sun,Azsun is azimuth angle of the Sun,Elant is elevation
angle of the antenna pointing, andAzant is azimuth angle of the antenna pointing.

3. Solar Interference Calculation

Antenna noise temperature is proportionate to the ratio of which apparent solar temperature and
the Sun is included in the antenna beam. Therefore, to calculate antenna noise temperature, gain
pattern of earth station antenna, showing the antenna beam and apparent solar temperature, should
be defined.
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As the gained pattern changes depending on the characteristic of each earth station antenna,
calculation should be obtained through directive measurement. However, obtaining characteristics
by measuring each antenna would be practically impossible, thus, the study was conducted based
on the WARC-79 gain pattern (CCIR 1982), employed by ITU. The WARC-79 gain pattern has
a parameter in accordance with the radio frequency transmitted to antennas and the diameter of
antennas.

Tsun - the off-season sun’s noise temperature- can be obtained via formula (23) (Shimabukuro
& Stacey 1968, Vuong & Forsey 1983).

Tsun = 120000f−0.75 (23)

where,f is frequency of solar noise and a GHz unit. The solar noise radiation will be extinct while
passing through the atmosphere of earth, and the extinction efficiency has a different value according
to frequency as shown in formula (24) (Johannsen & Titus 1986)

atten = 0.036/ sin (Elsun) : C-band[dB]

atten = 0.072/ sin (Elsun) : Ku-band[dB] (24)

Hence, the solar noise temperature observed from actual earth station antennas is as shown in for-
mula (25).

T ′sun = Tsun × 10−atten/10 (25)

Moreover, as the increase of noise temperature in accordance with solar is proportionate depending
upon how much solar disc comes into the range of the antenna, thus, it can be integral as formula
(26) (Mohamadi & Lyon 1988).

∆Tant = p
T ′sun

4π

∫∫

sun’s disk
G(θ, φ) sin(θ)dθdφ (26)

where,p is the single polarization attenuation factor, its value is 0.5, andG(θ, φ) is WARC-79 gain
pattern.

Formula (26) above can integrate simple solar disc, such as onφ direction, hence, it can be
converted to an integration method as shown in formula (27) forθ direction (Lin & Yang 1989).

∆Tant = p
T ′sun

4π

∫ θ0+αs

θ=θ0−αsor 0
G(θ, φ) sin(θ)2(φi)dθ (27)

where,αs is ‘semidiameter of the Sun’, obtained from formula (7),θ0 is ‘off-axis angle’ obtained
from formula (15), andφi is as follows formula.

φi =
[

π : for θ0 − αs ≤ 0 andθ ≤ αs − θ0

arccos ( cos αs−cos θ cos θ0
sin θ sin θ0

) : otherwise
(28)

While the integration method above can perform integration through numerical integration, it
can create a problem on both ends of integral interval when using general Romberg integration,
thus, the Gaussian quadrature method should be used (Lee et al. 1991). Moreover, integral interval
should be started from 0 ifθ0 − αs ≤ 0.

To compare the calculated antenna noise temperature with actual observed value, a barometer
enabling quantitative comparison is required, thus,∆(C/N) is defined as a barometer as follows
(Vuong & Forsey 1983, Lin & Yang 1989).

∆(C/N) = 10 log[(Tsys + Tant)/Tsys] (29)



Prediction of Solar Interference37

Table 1. TU Media Ground Station Information.

Items Value
Earth Station Longitude (Deg) E127.034
Earth Station Latitude (Deg) N37.546
Antenna Azimuth Angle (Deg) 153.416
Antenna Elevation Angle (Deg) 43.0
Antenna Diameter (m) 9.2
Satellite Longitude (Deg) E144.0

Figure 3. Actual solar interference time observed from TU media ground station in Seongsu-dong (Provided by
TU media dated Oct. 09, 2007) (TU media 2007).

In formula (29),Tsys is the system noise temperature of an antenna system when there is no solar
interference, whilstTant is the antenna noise temperature calculates via formula (27). WhileTsys

can calculate and measure an actual antenna system, general antenna systems has between roughly
250∼ 300K values (Lee et al. 1991).

4. Comparison and error analysis of solar interference time

A calculation program is created for solar interference based on the aforementioned formulas.
The Visual C++ .Net 2008 was used for programming, and the Origin program was utilized to
simulate graphics. In addition, we calculated the solar interference time of TU media ground station
in Seongsu-dong displayed in Table 1, to verify the accuracy of the program, and compared with
actual observed value.

The actual C/N value and time observed from TU media ground station on Seoungsu-dong on
October 9, 2007 is illustrated in Figure 3. As of an observation result, the time of solar interference
commenced at about11h01m a.m. on KST, of which reached its maximum at11h02m30s a.m., and
over at about11h04m a.m.. ∆(C/N) value of maximum interference time is 9.8 dB. Figure 4 is a
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Figure 4. Solar interference time graph from TU media 9.2m antenna calculated through a model (Oct 09,
2007).
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Figure 5. Spring quarter calculation result of 2010 (KST 11:20:00 - 11:30:00).

graph calculated using a model. Where, the calculation is implemented assuming, system noise as
250 K, and efficiency of an antenna system as 65% (Mohamadi & Lyon 1988). The time in Figure
4 displays minute and second units only. As a calculation result, the time of sun interference had
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Figure 6. Solar interference time change when the angle of an antenna has0.1◦ error (KST 11:20:00 - 11:30:00).

commenced at11h01m02s a.m., ended at11h03m50s a.m., showing the maximum interference time
as11h02m26s a.m.. Maximum∆(C/N) of the maximum interference time is 9.2 dB, which is
lower than observation value by 0.6 dB. Through this, we were able to confirm the consistency with
a model and actual observation value.

Figure 5 is a graph demonstrates the time of solar interference expected in spring quarter of
2010. According to Figure 5, solar interference starts between 5th and 6th of March, in the case
of spring quarter in 2010, and the occurrence time is between11h24m a.m. –11h28m a.m.. Solar
interference occurs the most in March 6, while maximum interference time is at11h26m19s a.m.,
and the maximum∆(C/N) value is 9.29 dB. Solar interference occurs throughout many days, and
as days go by, the maximum occurrence time shows a tendency to become faster gradually.

An error analysis is implemented based on March 6, 2010. The date is forecasted as the day,
which most solar interference would occur in the spring quarter of 2010. The maximum solar in-
terference occurred time on this day was at11h26m19s a.m., and based on the MBSAT satellite
information and earth station antenna illustrated in Table 1, we calculated solar interference oc-
currence time according to each error, and compared the time, which maximum solar interference
occurred, and compared with∆(C/N) value. The direction of each earth station antenna shown in
Figures 6 and 7 shows the change of∆(C/N) value and solar interference time, which would occur
in case of error of0.1◦ and0.25◦, respectively. The El of Figures 6 and 7 signifies the altitude of the
antenna, while Az represents the azimuth angle of the antenna.

Figure 6 represents when the error of direction of an antenna shows0.1◦. The maximum time
of solar interference occurs 9 seconds faster than11h26m19s a.m. when the altitude of an antenna is
lower than the standard altitude0.1◦. When the azimuth angle is as little as0.1◦, the maximum solar
interference occurs 35 seconds faster. When altitude is increased by0.1◦, the maximum interference
occurs 13 seconds faster, and when, azimuth angle is increased by0.1◦, the interference occurs 16
seconds later. Through this, we are able to confirm that when the altitude of an antenna changes by
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Figure 7. Solar interference time change when the angle of an antenna has0.25◦ error (KST 11:20:00 -
11:30:00).

0.1◦, there is an error range with solar interference time at−35 ∼ +16 seconds. Figure 7 shows the
difference when0.25◦ error is given to an antenna. The time of maximum solar interference when
altitude is as little as0.25◦, it occurs 22 seconds faster than standard time, and when azimuth angle
is as big as0.25◦, it occurs 41 seconds late. Thus, suppose we calculate the rest, when the error of
bearing of an antenna is0.25◦, we are able to confirm an error range of−27 ∼ +41 seconds.

When we examined Figure 6 and 7, we can see that the intensity of maximum solar interference
changes when antenna error occurs, and that changes in the width of∆(C/N) is even bigger in0.25◦

change, compare to0.1◦ angle change of an antenna, and the error of a solar interference occurrence
time increase as much as the antenna pointing angle variance. Through this, we confirmed that the
more the accurate measurement is carried on the antennas direction, the higher the accuracy of solar
interference time predictions.

Figure 8, illustrates the change in solar interference time when the position of geostationary
satellite changes according to perturbation. Suppose we examine Figure 8, when the position of a
satellite moves to east by0.05◦, that is when it is located at the latus rectum144.05◦, the maximum
interference time is11h26m05s a.m., which is faster by 14 seconds compare to when it is positioned
at the latus rectum144.0◦, the standard position. When a satellite moves to west by0.05◦ and
positioned at143.95◦ east, the time of maximum solar interference is11h26m32s a.m., which is
13 seconds delayed than that of standard position. The change of maximum interference period
according to the position of a satellite is0.05◦, and has error range of−14 ∼ +13 seconds at
the time of change. However, in a case where there is more than0.1◦ position change, an error
occurs with range of one minute or more. In addition, we can also check the change of intensity of
solar interference. However, unlike the error occurrence of antennas, we recognized that there is no
significant change of in respective cases when a satellite’s position changes.
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Figure 8. Change of solar interference time according to the change of satellite position (KST 11:20:00-
11:30:00).

5. Conclusion

The purpose of this study is to forecast precise prediction of solar interference time. The study
calculated the precise position of the Sun, using DE406 and an earth ellipsoid model, and via a solar
interference program, we predicted noise temperature and C/N decline of earth station antenna in
accordance with solar interference of stationary satellite and earth station. As a result of applying
a communication satellite ground station in Seongsu-dong and MBSAT operated by TU media, we
confirmed that they are consistent with actual observation, and verified their accuracy through error
analysis.

In-depth of consideration is needed for the intensity of solar interference, not only the affect
of the Sun, but also on the specific system of each earth station antenna. Specifically, the size of
antennas and a wavelength range of radio wave used in antennas affect the most in the time of solar
interference, thus it is necessary to have precise information for a better and precise prediction.

An error according to the position change of a geostationary communication satellite will result
a time difference within 30 seconds, if position maintenance is implemented within±0.05◦. There-
fore, we expect there will be no significant affect as practical purposes in precise position calculation
of satellites. On the other hand, since the direction of antennas can be a significant error factor, pre-
cise calculation of the direction of antennas is imperative to the prediction of solar interference time.

In the study, we calculated the time of solar interference between geostationary communication
satellite and earth station. In a case of general low orbit satellite, a solar interference time calculation
can be conducted using the same method the study employed, if satellite altitude and azimuth angle
is obtained from earth station through the orbital elements of satellites.

Moreover, even the precise position of the Moon can be calculated using DE406. It is known
that there is noise of about 250K in the Moon, and the interference time according to the Moon can
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be calculated by taking advantage of this study.
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