• Title/Summary/Keyword: Error Dynamics

Search Result 694, Processing Time 0.026 seconds

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

The study and design of a deuteron drift tube linear accelerator for middle energy neutron source

  • Tianhao Wei;Yuanrong Lu;Zhi Wang;Meiyun Han;Ying Xia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3933-3941
    • /
    • 2024
  • The paper concerns a room-temperature cross-bar H-mode (CH) drift tube linac (DTL) with KONUS (Kombinierte Null Grad Struktur) [1,2] beam dynamics. To make the acceleration in DTL cell more efficient, we studied the correlation between transit time factor (TTF) and structural coefficients, first. Furthermore, we developed a new code with Python to demonstrate the longitudinal dynamics more clearly. The code computationally generates clusters, bunch centers, and emittance growth in a single figure. Thus, the stabilization region and cluster evolution at various negative phases can be studied. Based on the above studies, we designed a 162.5 MHz CH-DTL to accelerate 10 mA D+ from 2.11 MeV to 3.25 MeV in continuous-wave (CW) mode. The proposed CH-DTL is a part of the Middle Energy Neutron Source (MENS). The dynamics and RF design were iterated to make the gap voltage error lower than 1 %. The initial beam is assumed to come from a Radio Frequency Quadrupole accelerator (RFQ). The geometries of the CH-DTL are optimized by using CST. Multiparticle tracking from LEBT to RFQ is performed with TraceWin and the transmission efficiency in the CH-DTL is 100 %.

Design of sensing element for 3-component load cell using parallel plate structure (병렬판구조를 이용한 3분력 로드셀 감지부의 설계)

  • Kim, Gap-Sun;Kang, Dae-Im;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

Design and evaluation of binocular type six-component load cell by using experimental technique (실험계획법을 이용한 쌍안경식 6축 로드셀의 설계 및 상호간섭 오차 평가)

  • Kang, Dae-Im;Kim, Gab-Sun;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1921-1930
    • /
    • 1997
  • This paper presents the effective technique to design a six-axis load cell by using experimental design with an orthogonal array. A binocular structure is used as a basic sensing element for a load cell instead of the parallel plate structure. The finite element method is adopted to obtain strain distributions of the sensing element, and by doing the analysis of variances, its results are utilized in determining the factor which is more influential to the output strain. Calibration test results show that the developed six-axis loa cell with the maximum capacities of 196 N in forces and 19.6 N. m in moments is evaluated to be useful with the coupling error less than 2.5%.

Development of an Accuracy Simulation Technology for Mechanical Machines (기계장비 정밀도 시뮬레이션 기술 개발)

  • Park, Chun-Hong;Hwang, Joo-Ho;Lee, Chan-Hong;Song, Chang-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.

Comparison of Three Optimization Methods Using Korean Population Data

  • Oh, Deok-Kyo
    • Korean System Dynamics Review
    • /
    • v.13 no.2
    • /
    • pp.47-71
    • /
    • 2012
  • The purpose of this research is the examination of validity of data as well as simulation model, i.e. to simulate the real data in the SD model with the least error using the adjustments for the faithful reflection of real data to the simulation. In general, SD programs (e.g. VENSIM) utilize the Euler or Runge-Kutta method as an algorithm. It is possible to reflect the trend of real data via these two estimation methods however can cause the validity problem in case of the simulation requiring the accuracy as they have endogenous errors. In this article, the future population estimated by the Korea National Statistical Office (KNSO) to 2050 is simulated by the aging chain model, dividing the population into three cohorts, 0-14, 15-64, 65 and over cohorts by age and offering the adjustments to them. Adjustments are calculated by optimization with three different methods, optimization in EXCEL, manual optimization with iterative calculation, and optimization in VENSIM DSS, the results are compared, and at last the optimal adjustment set with the least error are found among them. The simulation results with the pre-determined optimal adjustment set are validated by methods proposed by Barlas (1996) and other alternative methods. It is concluded that the result of simulation model in this research has no significant difference from the real data and reflects the real trend faithfully.

  • PDF

Trajectoroy control for a Robot Manipulator by Using Multilayer Neural Network (다층 신경회로망을 사용한 로봇 매니퓰레이터의 궤적제어)

  • 안덕환;이상효
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1186-1193
    • /
    • 1991
  • This paper proposed a trajectory controlmethod for a robot manipulator by using neural networks. The total torque for a manipulator is a sum of the linear feedback controller torque and the neural network feedfoward controller torque. The proposed neural network is a multilayer neural network with time delay elements, and learns the inverse dynamics of manipulator by means of PD(propotional denvative)controller error torque. The error backpropagation (BP) learning neural network controller does not directly require manipulator dynamics information. Instead, it learns the information by training and stores the information and connection weights. The control effects of the proposed system are verified by computer simulation.

  • PDF

Capturing the Short-run and Long-run Causal Behavior of Philippine Stock Market Volatility under Vector Error Correction Environment

  • CAMBA, Abraham C. Jr.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.41-49
    • /
    • 2020
  • This study investigates the short-run and long-run causal behavior of the Philippine stock market index volatility under vector error correction environment. The variables were tested first for stationarity and then long-run equilibrium relationship. Moreover, an impulse response function was estimated to examine the extent of innovations in the independent variables in explaining the Philippine stock market index volatility. The results reveal that the volatility of the Philippine stock market index exhibit long-run equilibrium relationship with Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil prices. The short-run dynamics-based VECM estimates indicate that in the short-run, increases (i.e., depreciation) in Peso-Dollar exchange rate cause PSEI volatility to increase. As for the London Interbank Offered Rate, it causes increases in PSEI volatility in the short-run. The adjustment coefficients used with the long-run dynamics validates the presence of unidirectional causal long-run relationship from Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil prices to PSEI volatility, and bidirectional causal long-run relationship between PSEI volatility and London Interbank Offered Rate. The impulse response functions developed within the VECM framework demonstrate the positive and negative reactions of PSEI volatility to unanticipated Peso-Dollar exchange rate, London Interbank Offered Rate, and crude oil price shocks.

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF

Waypoint Tracking of Large Diameter Unmanned Underwater Vehicles with X-stern Configuration (X-stern 배열을 가진 대형급 무인잠수정의 경로점 추적)

  • Kim, Do Wan;Kim, Moon Hwan;Park, Ho-Gyu;Kim, Tae-Yeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.387-393
    • /
    • 2017
  • This paper focuses on a horizontal waypoint tracking and a speed control of large diameter unmanned underwater vehicles (LDUUVs) with X-stern configuration plane. The concerned design problem is converted into an asymptotic stabilization of the error dynamics with respect to the desired yaw angle and surge speed. It is proved that the error dynamics under the proposed control scheme based on the linear control and the feedback linearization can be considered as a cascade system; the cascade system is asymptotically stable if its nominal systems are so. This stability connection enables to separately deal with the waypoint tracking problem and the speed control one. By using the sector nonlinearity, the nominal system with nonlinearities is modeled as a polytopic linear parameter varying (LPV) system with parametric uncertainties. Then, sufficient linear matrix inequality (LMI) conditions for its asymptotic stabilizability are derived in the sense of Lyapunov stability criterion. An example is given to show the validity of the proposed methodology.