• Title/Summary/Keyword: Erbium YAG lasers

Search Result 11, Processing Time 0.026 seconds

A comparison of different gingival depigmentation techniques: ablation by erbium:yttrium-aluminum-garnet laser and abrasion by rotary instruments

  • Lee, Kwang-Myung;Lee, Dong-Yeol;Shin, Seung-Il;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.4
    • /
    • pp.201-207
    • /
    • 2011
  • Purpose: The aim of this study is to compare two different gingival depigmentation techniques using an erbium:yttrium-aluminum-garnet (Er:YAG) laser and rotary instruments. Methods: Two patients with melanin pigmentation of gingiva were treated with different gingival depigmentation techniques. Ablation of the gingiva by Er:YAG laser was performed on the right side, and abrasion with a rotary round bur on the opposite side. Results: The patients were satisfied with the esthetically significant improvement with each method. However, some pigment still remained on the marginal gingival and papilla. The visual analog scale did not yield much difference between the two methods, with slightly more pain on the Er:YAG laser treated site. Conclusions: The results of these cases suggest that ablation of the gingiva by an Er:YAG laser and abrasion with a rotary round bur is good enough to achieve esthetic satisfaction and fair wound healing without infection or severe pain. Prudent care about the gingival condition, such as the gingival thickness and degree of pigmentation along with appropriate assessment is needed in ablation by the Er:YAG laser procedure.

The Efficacy and Safety of Ablative Fractional Resurfacing Using a 2,940-Nm Er:YAG Laser for Traumatic Scars in the Early Posttraumatic Period

  • Kim, Sun-Goo;Kim, Eun-Yeon;Kim, Yu-Jin;Lee, Se-Il
    • Archives of Plastic Surgery
    • /
    • v.39 no.3
    • /
    • pp.232-237
    • /
    • 2012
  • Background : Skin injuries, such as lacerations due to trauma, are relatively common, and patients are very concerned about the resulting scars. Recently, the use of ablative and non-ablative lasers based on the fractional approach has been used to treat scars. In this study, the authors demonstrated the efficacy and safety of ablative fractional resurfacing (AFR) for traumatic scars using a 2,940-nm erbium: yttrium-aluminum-garnet (Er:YAG) laser for traumatic scars after primary repair during the early posttraumatic period. Methods : Twelve patients with fifteen scars were enrolled. All had a history of facial laceration and primary repair by suturing on the day of trauma. Laser therapy was initiated at least 4 weeks after the primary repair. Each patient was treated four times at 1-month intervals with a fractional ablative 2,940-nm Er:YAG laser using the same parameters. Posttreatment evaluations were performed 1 month after the fourth treatment session. Results : All 12 patients completed the study. After ablative fractional laser treatment, all treated portions of the scars showed improvements, as demonstrated by the Vancouver Scar Scale and the overall cosmetic scale as evaluated by 10 independent physicians, 10 independent non-physicians, and the patients themselves. Conclusions : This study shows that ablative fractional Er:YAG laser treatment of scars reduces scars fairly according to both objective results and patient satisfaction rates. The authors suggest that early scar treatment using AFR can be one adjuvant scar management method for improving the quality of life of patients with traumatic scars.

Hair Loss Treatment Using Erbium:YAG Fractional Laser with Hair Growth-promoting Solution

  • Ahn, Dong Hyun
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.176-180
    • /
    • 2021
  • Several methods have been used to treat androgenetic hair loss, ranging from hair transplants to finasteride and minoxidil. Sometimes platelet-rich plasma injection therapy may be used to increase the satisfaction of patients who come to the hospital. However, some patients are sensitive to pain and are subjected to the inconvenience of requiring treatment after each blood sampling. The author had reported the effects of using a hair growth-promoting solution and JetpeelTM in parallel with a painless hair loss treatment method. However, the author was interested in more effective methods for patients with M-shaped or vertex hair loss who do not want to take medications or undergo hair transplant. In addition to the existing light-emitting diode therapy and electromagnetic field treatment, the author has made considered attempts to use various laser wavelength bands. However, the equipment for these methods can be expensive and are not suitable for patients who emphasize on cost-effectiveness. Therefore, the author used an existing reported method and a device based on the fractional erbium:YAG laser to provide the hair growth-promoting solution in parallel. The author chose a fractional 2940 nm-based laser device as a medium that could efficiently increase the growth phase, reduce the catagen phase, and facilitate intradermal product and drug delivery. As a result, there was a therapeutic benefit without any significant side effects such as redness and itching. Among the patients, the author reported the effects of the treatment on one patient with frontal M-shaped, mid, and vertex hair loss.

A comparative evaluation of $CO_2$ and erbium-doped yttrium aluminium garnet laser therapy in the management of dentin hypersensitivity and assessment of mineral content

  • Belal, Mahmoud Helmy;Yassin, Abdulaziz
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.5
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: Dentin hypersensitivity is a potential threat to oral health. Laser irradiation may provide reliable and reproducible treatment but remains controversial. The present study aimed to evaluate the effects of $CO_2$ or erbium-doped yttrium aluminium garnet (Er:YAG) laser therapy, and to assess mineral content. Methods: Eighteen human single-rooted teeth affected with advanced periodontitis were obtained. Buccal and lingual surfaces were planed to form 36 specimens. Ethylenediaminetetraacetic acid gel (24%) was applied to remove the smear layer and simulate hypersensitive teeth. The experimental groups were: group 1, control (no irradiation); group 2, $CO_2$ laser (repetitive pulsed mode, 2 W, $2.7J/cm^2$); and group 3, Er:YAG laser (slight contact mode, 40 mJ/pulse and 10 Hz). To evaluate dentinal tubule occlusion, six specimens per group (2-mm thickness) were prepared and observed using scanning electron microscopy (SEM) for calculation of the occlusion percentage. To evaluate the mineral content, six specimens per group (0.6-mm thickness) were used, and then the levels of Ca, K, Mg, Na, and P were measured by inductively coupled plasma-atomic emission spectrometry. In addition, the surface temperature of the specimens during laser irradiation was analyzed by a thermograph. Results: The SEM photomicrographs indicated melted areas around exposed dentinal tubules and a significantly greater percentage of tubular occlusion in the $CO_2$ and Er:YAG laser groups than the control, and in the Er:YAG group than the $CO_2$ laser group. In addition, no significant differences were noted among the experimental groups for the mineral elements analyzed. The $CO_2$ laser group showed an evident thermal effect compared to the Er:YAG group. Conclusions: $CO_2$ and Er:YAG laser are effective in treating dentin hypersensitivity and reducing its symptoms. However, the Er:YAG laser has a more significant effect; thus, it may constitute a useful conditioning item. Furthermore, neither $CO_2$ nor Er:YAG lasers affected the compositional structure of the mineral content.

Crystal Growth of Er:YAG and Er,Cr:YSGG for Medical Lasers

  • Yu, Young-Moon;Jeoung, Suk-Jong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.161-164
    • /
    • 1998
  • Erbium doped garnet crystals were grown by Czochralski method. Relationshipes between crystal quality and crystal growth factors such as pulling rate, rotation rate and concentration of active ions and sensitizers were investigated. Optimum pulling and rotation rate for high quality Er:YAG crystal were 1 mm/hr and 20 rpm and for Er,Cr:YSGG crystal 2-4 mm/hr and 10 rpm respectively. The size of the crystals grown was up to 20-30 mm in diameters and 95-135 mm in length. Er:YAG crystal grown under the nitrogen atmosphere was pink and transparent and Er,Cr:YSGG under the 98% {{{{ { N}_{ 2} }}}} and 2% {{{{ { O}_{2 } }}}} was dark green and transparent. Under the polarizing microscopic observations with crossed polar, striations and {211} core facets were detected. Spectroscopic properties for Er,Cr:YSGG laser rods with <111> axis, 80 mm in length and 6.3 mm in diameter for medical laser applications of 2.79 ${\mu}$m wavelength were manufactured and then laser oscillation was achieved.

  • PDF

The Effects of a Er:YAG Laser on Machined, Sand-Blasted and Acid-Etched, and Resorbable Blast Media Titanium Surfaces Using Confocal Microscopy and Scanning Electron Microscopy

  • Park, Jun-Beom;Kim, Do-Young;Ko, Youngkyung
    • Journal of Korean Dental Science
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2016
  • Purpose: Laser treatment has become a popular method in implant dentistry, and lasers have been used for the decontamination of implant surfaces when treating peri-implantitis. This study was performed to evaluate the effects of an Erbium-doped:Yttrium-Aluminum-Garnet (Er:YAG) laser with different settings on machined (MA), sand-blasted and acid-etched (SA), and resorbable blast media (RBM) titanium surfaces using scanning electron microscopy and confocal microscopy. Materials and Methods: Four MA, four SA, and four RBM discs were either irradiated at 40 mJ/20 Hz, 90 mJ/20 Hz, or 40 mJ/25 Hz for 2 minutes. The specimens were evaluated with scanning electron microscopy and confocal microscopy. Result: The untreated MA surface demonstrated uniform roughness with circumferential machining marks, and depressions were observed after laser treatment. The untreated SA surface demonstrated a rough surface with sharp spikes and deep pits, and the laser produced noticeable changes on the SA titanium surfaces with melting and fusion. The untreated RBM surface demonstrated a rough surface with irregular indentation, and treatment with the laser produced changes on the RBM titanium surfaces. The Er:YAG laser produced significant changes on the roughness parameters, including arithmetic mean height of the surface (Sa) and maximum height of the surface (Sz), of the MA and SA surfaces. However, the Er:YAG laser did not produce notable changes on the roughness parameters, such as Sa and Sz, of the RBM surfaces. Conclusion: This study evaluated the effects of an Er:YAG laser on MA, SA, and RBM titanium discs using confocal microscopy and scanning electron microscopy. Treatment with the laser produced significant changes in the roughness of MA and SA surfaces, but the roughness parameters of the RBM discs were not significantly changed. Further research is needed to evaluate the efficiency of the Er:YAG laser in removing the contaminants, adhering bacteria, and the effects of treatment on cellular attachment, proliferation, and differentiation.

The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants

  • Kim, Ji-Hyun;Herr, Yeek;Chung, Jong-Hyuk;Shin, Seung-Il;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.234-241
    • /
    • 2011
  • Purpose: One of the most frequent complications related to dental implants is peri-implantitis, and the characteristics of implant surfaces are closely related to the progression and resolution of inflammation. Therefore, a technical modality that can effectively detoxify the implant surface without modification to the surface is needed. The purpose of this study was to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on the microstructural changes in double acid-etched implant surfaces according to the laser energy and the application duration. Methods: The implant surface was irradiated using an Er:YAG laser with different application energy levels (100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse) and time periods (1 minute, 1.5 minutes, and 2 minutes). We then examined the change in surface roughness value and microstructure. Results: In a scanning electron microscopy evaluation, the double acid-etched implant surface was not altered by Er:YAG laser irradiation under the condition of 100 mJ/pulse at 10 Hz for any of the irradiation times. However, we investigated the reduced sharpness of the specific ridge microstructure that resulted under the 140 mJ/pulse and 180 mJ/pulse conditions. The reduction in sharpness became more severe as laser energy and application duration increased. In the roughness measurement, the double acid-etched implants showed a low roughness value on the valley area before the laser irradiation. Under all experimental conditions, Er:YAG laser irradiation led to a minor decrease in surface roughness, which was not statistically significant. Conclusions: The recommended application settings for Er:YAG laser irradiation on double acid-etched implant surface is less than a 100 mJ/pulse at 10 Hz, and for less than two minutes in order to detoxify the implant surface without causing surface modification.

Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

  • Lee, Ji-Hun;Kwon, Young-Hyuk;Herr, Yeek;Shin, Seung-Il;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Purpose: The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods: The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results: All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically Significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions: To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces.

ER: YAG LASER IRRADIATED IMPLANT SURFACE OBSERVATION WITH SCANNING ELECTRON MICROSCOPY (Er: YAG 레이저 조사 임프란트 표면에 대한 전자주사현미경관찰)

  • Choi, Jung-Goo;Choi, Su-Jin;Min, Seung-Ki;Oh, Seung-Hwan;Kwon, Kyung-Hwan;Choi, Moon-Ki;Lee, June;Oh, Se-Ri
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.540-545
    • /
    • 2008
  • Since mid 20th century, dental treatments with laser have been introduced and improved a lot. Because early $CO_2$, Nd:YAG, diode, argon, and holmium lasers are used for dealing soft tissue, so it applied just limited field. But, in 1997 the lasers of erbium family that able to dealing soft and hard tissue also were introduced, laser application fields are enlarged. In today, the application fields reach on implantation treatment, so clinicians can use the laser to make holes for implantation, and flap elevation, even though treating peri-implantitis. So our class want to discover the optimal setting of Er:YAG laser when treating peri-implantitis. We observed the surface that initially treated by RBM and TPS passion and laser with varied options of exposure time and power with SEM image. For this we conclude the optimal setting range that does not alter the implant surface structure and report it.

The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant

  • Kim, Seong-Won;Kwon, Young-Hyuk;Chung, Jong-Hyuk;Shin, Seung-Il;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.276-282
    • /
    • 2010
  • Purpose: The present study was performed to evaluate the effect of erbium:yttrium-aluminium-garnet (Er:YAG) laser irradiation on the change of hydroxyapatite (HA)-coated implant surface microstructure according to the laser energy and the application time. Methods: The implant surface was irradiated by Er:YAG laser under combination condition using the laser energy of 100 mJ/pulse, 140 mJ/pulse and 180 mJ/pulse and application time of 1 minute, 1.5 minutes and 2 minutes. The specimens were examined by surface roughness evaluation and scanning electron microscopic observation. Results: In scanning electron microscope, HA-coated implant surface was not altered by Er:YAG laser irradiation under experimental condition on 100 mJ/pulse, 1 minute. Local areas with surface melting and cracks were founded on 100 mJ/pulse, 1.5 minutes and 2 minutes. One hundred forty mJ/pulse and 180 mJ/pulse group had surface melting and peeling area of HA particles, which condition was more severe depending on the increase of application time. Under all experimental condition, the difference of surface roughness value on implant surface was not statistically significant. Conclusions: Er:YAG laser on HA-coated implant surface is recommended to be irradiated below 100 mJ/pulse, 1 minute for detoxification of implant surface without surface alteration.