• Title/Summary/Keyword: Equivalent circuit modeling

Search Result 273, Processing Time 0.029 seconds

An Improved Distributed Equivalent Circuit Modeling for RF Components by Real-Coefficient AFS Technique

  • Kim, Koon-Tae;Ko, Jae-Hyeong;Paek, Hyun;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.408-413
    • /
    • 2011
  • In this paper, a real-coefficient approach to Adaptive Frequency Sampling (AFS) technique is developed for efficient equivalent circuit modeling of RF components. This proposed method is advantageous than the vector fitting technique and the conventional AFS method in terms of fewer samples leading to a lower order of a rational function on a given data and to a direct conversion to an equivalent circuit for PSPICE(Personal Simulation Program with Integrated Circuit Emphsis) simulation, respectively. To validate the proposed method, the distributed equivalent circuit of a presented multi-layered RF low-pass filter is obtained using the proposed real-coefficient AFS, and then comparisons with EM simulation and circuit simulation for the device under consideration are achieved.

Circuit Modeling of Interdigitated Capacitors Fabricated by High-K LTCC Sheets

  • Kim, Kil-Han;Ahn, Min-Su;Kang, Jung-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.182-190
    • /
    • 2006
  • The circuit modeling of interdigitated capacitors fabricated by high-k low-temperature co-fired ceramic (LTCC) sheets was investigated. The s-parameters of each test structure were measured from 50 MHz to 10 GHz, and the modeling was performed using these measured sparameters up to the first resonant frequency. Each test structure was divided into appropriate building blocks. The equivalent circuit of each building block was composed based on the partial element equivalent circuit (PEEC) method. Modeling was executed to optimize the parameters in the equivalent circuit of each building block. The validity of the extracted parameters was verified by the predictive modeling for the test structures with different geometry. After that, Monte Carlo analysis and sensitivity analysis were performed based on the extracted parameters. The modeling methodology can allow a device designer to improve the yield and to save time and cost for the design and manufacturing of devices.

  • PDF

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.

Equivalent Circuit Modeling of Wideband Underwater Acoustic Piezoelectric Vibrator (광대역 수중 음향 압전 진동체의 등가회로 모델링)

  • 조치영;김원호;윤형규
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.645-652
    • /
    • 1996
  • In this paper an identification method is presented to obtain the equivalent electric circuit model of a wideband underwater acoustic piezoelectric vibrator. Unknown parameters involved in the equivalent circuit are indentified using the measured electrical admittances in air. The proposed method is applied to an example transducer. The validity of equivalent circuit model is demonstrated by the comparison between the experimental measurements and analytical calculations of TVR(transmitting voltage response) in water.

  • PDF

Equivalent Circuit Modeling Applying Rational Function Fitting (유리함수 근사를 이용한 등가회로 모델링)

  • Paek, Hyun;Ko, Jae-Hyung;Kim, Kun-Tae;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, we propose a method that applies Vector Fitting (VF) technique to the equivalent circuit model for RF passive components. These days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI/SI (Power Integrity/Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time consuming task. Therefore equivalent circuit model using RF passive component is important. VF schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip line structure.

  • PDF

Equivalent Circuit Modeling applying Adaptive Frequency Sampling (Adaptive Frequency Sampling 을 이용한 등가회로 모델링)

  • Paek, Hyun;Kim, Koon-Tae;Kahng, Sung-Tek;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.281-284
    • /
    • 2009
  • In this paper, we propose a method that applies Adaptive Frequency Sampling(AFS) technique to the equivalent circuit model for RF passive components. Thes days wireless communication system is getting smaller and smaller. So EMI/EMC is an issue in RF. We can solve PI(Power Integrity)/SI(Signal Integrity) that one of EMI/EMC problem apply IFFT for 3D EM simulation multiple with input signal. That is time comuming task. Therefore equivalent circuit model using RF passive component is important. AFS schemes are implemented to obtain the rational functions. S parameters of the equivalent circuit moldel is compared to those of EM simulation in case of the microstrip line structure.

  • PDF

Magnetization Characteristics Analysis in a Pole Changing Memory Motor Using Coupled FEM and Preisach Modeling

  • Lee, Jung-Ho;Lee, Seung-Chul
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.386-390
    • /
    • 2011
  • This paper deals with the magnetic equivalent circuit modeling and permanent magnet (PM) performance evaluations of a pole changing memory motor (PCMM). We use a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of the permanent magnets. The focus of this paper is on the evaluation of characteristics such as the magnetizing direction and the pole number of the machine under re- and de-magnetization conditions.

Simplified d -q Equivalent Circuit of IPMSM Considering Inter-Turn Fault State (IPMSM의 선간단락고장에 따른 새로운 d -q 등가회로)

  • Kang, Bong-Gu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1355-1361
    • /
    • 2016
  • The inter-turn fault (ITF) causes the negative sequence components in the d -q voltage equation due to an increase in the unbalance of three-phase input currents. For this reason, d -q voltage equation become complicate as the voltage equation is classified into positive and negative components. In this study, we propose a simplified d -q equivalent circuit of an interior permanent magnet synchronous motor under ITF state. First, we proposed modeling method for d -q current based on the finite element method simulation results. Then, we developed the simplified d -q equivalent circuit by applying the proposed d -q current modeling.

Equivalent Circuit Modeling of Rosen-type Multilayer Piezoelectric Transformer (Rosen형 적층 압전변압기의 등가회로 모델링)

  • Shin, Hoon-Beom;Lee, Yong-Kuk;Yu, Young-Han;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1099-1105
    • /
    • 2006
  • In this paper, the equivalent circuit model of a Rosen-type multilayer piezoelectric transformer(MPT) has been proposed based on the Mason's equivalent circuit model and the principle of single layer piezoelectric plate. From the piezoelectric direct and converse effects, the symbolic expressions between the electric inputs and outputs of the MPT have been derived from the equivalent circuit model. A simplified equivalent circuit model of the MPT whose driving part has a single input form has been proposed. The symbolic expressions of the driving part have been derived from the simplified equivalent circuit model and the model was compared with the multi-input equivalent circuit model through the simulation. In the comparisons between the simulation results and the experimental data, output voltage is 630 Vp-p in case of 11-layered MPT and 670 Vp-p for 13-layered MPT over the experiment range. As the load resistance increases, output voltage increases and saturates over $300k{\Omega}$ and the resonant frequency changes from 102 kHz to 103 kHz. The simulation and the experimental results agree well over different load resistances and frequencies.

Characterization of Embedded Inductors using Partial Element Equivalent Circuit Models (부분등가회로모델을 이용한 매립형 인덕터의 특성 연구)

  • 신동욱;오창훈;이규복;김종규;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.404-408
    • /
    • 2003
  • The characterization for several multi-layer embedded inductors with different structures was investigated. The optimized equivalent circuit models for several test structures were obtained from HSPICE. Building blocks are modeled using Partial element equivalent circuit method. The mean and the standard deviation of model parameters were extracted and predictive modeling was performed on different test structure. From this study, the characteristic of multi-layer inductors can be predicted.