• Title/Summary/Keyword: Equivalent Thermal Conductivity

Search Result 52, Processing Time 0.026 seconds

The effects of various thermal parameters on coil temperature rise in TEFC induction motor (여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구)

  • Yun, Myeong-Geun;Ha, Gyeong-Pyo;Go, Sang-Geun;Lee, Yang-Su;Han, Song-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

Melting of Ice Inside a Horizontal Cylinder under the Volume Change (수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구)

  • 조남철;김동춘;이채탈;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

ASSESSMENT OF THE TiO2/WATER NANOFLUID EFFECTS ON HEAT TRANSFER CHARACTERISTICS IN VVER-1000 NUCLEAR REACTOR USING CFD MODELING

  • MOUSAVIZADEH, SEYED MOHAMMAD;ANSARIFAR, GHOLAM REZA;TALEBI, MANSOUR
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.814-826
    • /
    • 2015
  • The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid ($TiO_2$/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Study on cement-based grout for closed-loop vertical ground heat exchanger (수직 밀폐형 지중 열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.615-624
    • /
    • 2010
  • In this paper, the applicability of cement grout has been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which are exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout by performing equivalent hydraulic conductivity tests, in which a pipe locates at the center of the specimen.

  • PDF

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

Evaluation of Thermal Response Test of Energy Pile (에너지 파일의 현장 열응답 시험에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.93-99
    • /
    • 2014
  • Use of geothermal energy has been increased for its economical application and environmentally friendly utilization. Particularly, for energy piles, a spiral coil type ground heat exchanger (GHE) is more preferred than line type GHEs such as U and W shaped GHEs. A PHC energy pile with spiral coil type GHE was installed in an area of partially saturated dredged soil deposit, and a thermal response test (TRT) was conducted for 240 hours under a continuous operation condition. Besides, remolded soil samples from different layers were collected in the field, and soil specimens were reconstructed according to the field ground condition. Non-steady state probe methods were conducted in the lab, and ground thermal conductivity and thermal diffusivity were measured for the different soil layers. An equivalent ground thermal conductivity was calculated from the lab test results and it was compared with the field TRT result. The difference was less than 5%, which advocates the use of an equivalent ground thermal conductivity for the multi-layered ground. Furthermore, this paper also represents an equivalent ground thermal diffusivity evaluation method which is another very important design parameter.

Evaluation of Borehole Thermal Resistance in Ground Heat Exchanger (지중 열교환기의 보어홀 열저항 산정에 관한 연구)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Han-Byul;Go, Gyu-Hyun;Kim, Min-Jun;Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.49-56
    • /
    • 2013
  • The use of geothermal energy has been increased for economic and environmental friendly utilization. Ground thermal conductivity and borehole thermal resistance are very important parameters in the design of geothermal heat pump system. This paper presents an experimental study of heat exchange rate of U and W type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). U and W type GHEs were installed in a partially saturated dredged soil deposit, and TPTs were conducted to evaluate heat exchange rates under 100-hr continuous operation condition. The heat exchange rates were also calculated by analytical models to estimate borehole thermal resistances and were compared with experimental results. It comes out that multi-pole and equivalent diameter (EQD) models resulted in more accurate agreement than shape factor (SF) model which is currently more often used.

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.

Computation of equivalent material properties of woven fabric composites using homogenization technique (균질화기법을 이용한 WFC의 등가물성치 산출)

  • Jang, Ji-hyun;Yoon, Min-woo;Lee, Jin-hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.588-594
    • /
    • 1998
  • Reliable three-dimensional models of woven fabric composites had scarcely been proposed for their geometric complexity. Simplified models, mostly one- or two-dimensional, currently used are not considered effective enough because of their oversimplifications. In this paper, the equivalent thermal conductivities and elasticity properties of woven fabric composites are computed using homogenization technique. The computational results show that the strength and thermal conductivity linearly increase with fiber volume fraction and that the variations of undulation of fibers has little effect on equivalent material properties. Homogenization technique is proved useful in the study of woven fabric composites and may find a lot more applications in the area.