Browse > Article
http://dx.doi.org/10.12989/scs.2019.31.5.517

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites  

Kim, Seong Hwang (Department of Chemistry, Inha University)
Heo, Young-Jung (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Steel and Composite Structures / v.31, no.5, 2019 , pp. 517-527 More about this Journal
Abstract
To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.
Keywords
fiber reinforced polymers (FRP); fracture/fracture criteria; hybrid structures; shear-lag effect; bending and shear strength;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Liu, J. and Smalley, R.E. (2000), "Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K", J. Am. Chem. Soc., 122(10), 2383-2384.   DOI
2 Mishra, S., Dwivedi, J., Kumar, A. and Sankararamakrishnan, N. (2016), "Removal of antimonite (Sb (III)) and antimonate (Sb (V)) using zerovalent iron decorated functionalized carbon nanotubes", RSC Adv., 6(98), 95865-95878.   DOI
3 Mittal, G. and Rhee, K.Y. (2018), "Chemical vapor deposition-based grafting of CNTs onto basalt fabric and their reinforcement in epoxy-based composites", Compos. Sci. Technol., 165, 84-94.   DOI
4 Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary co nditions", Steel Compos. Struct. Int. J., 24(3), 359-367.
5 Najafi, E., Kim, J.Y., Han, S.H. and Shin, K. (2006), "UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion", Colloid. Surf. A Physicochem. Eng. Aspects., 284, 373-378.   DOI
6 Ozturk, B.U.L.E.N.T., Arslan, F. and Ozturk, S.U.L.T.A.N. (2007), "Hot wear properties of ceramic and basalt fiber reinforced hybrid friction materials", Tribol. Int., 40(1), 37-48.   DOI
7 Li, J., Sham, M.L., Kim, J.K. and Marom, G. (2007), "Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites", Compos. Sci. Technol., 67(2), 296-305.   DOI
8 Li, Y., Zhang, H., Liu, Y., Wang, H., Huang, Z., Peijs, T. and Bilotti, E. (2018), "Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates", Compos. Part A Appl. Sci. Manuf., 105, 9-18.   DOI
9 Ahmadi, M., Zabihi, O., Masoomi, M. and Naebe, M. (2016), "Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites", Compos. Sci. Technol., 134, 1-11.   DOI
10 Ajayan, P.M. and Tour, J.M. (2007), "Materials science: nanotube composites", Nature, 447(7148), 1066.   DOI
11 Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A. (2000), "Single-walled carbon nanotube-polymer composites: strength and weakness", Adv. Mater., 12(10), 750-753.   DOI
12 Alharbi, T.M., Vimalanathan, K., Lawrance, W.D. and Raston, C.L. (2018), "Controlled slicing of single walled carbon nanotubes under continuous flow", Carbon, 140, 428-432.   DOI
13 Bellahcene, T. and Aberkane, M. (2017), "Estimation of fracture toughness of cast steel container from Charpy impact test data", Steel Compos. Struct. Int. J., 25(6), 639-648. http://dx.doi.org/10.12989/scs.2017.25.6.639   DOI
14 Byl, O., Liu, J. and Yates, J.T. (2005), "Etching of carbon nanotubes by ozone a surface area study", Langmuir., 21(9), 4200-4204.   DOI
15 Carmisciano, S., De Rosa, I.M., Sarasini, F., Tamburrano, A. and Valente, M. (2011), "Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties", Mater. Des., 32(1), 337-342.   DOI
16 Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A. and Galiotis, C. (2008), "Chemical oxidation of multiwalled carbon nanotubes", Carbon, 46(6), 833-840.   DOI
17 Chen, W., Shen, H., Auad, M.L., Huang, C. and Nutt, S. (2009), "Basalt fiber-epoxy laminates with functionalized multi-walled carbon nanotubes", Compos. Part A Appl. Sci. Manuf., 40(8), 1082-1089.   DOI
18 Choi, J.R. and Park, S.J. (2013), "A study on thermal conductivity and fracture toughness of alumina nanofibers and powdersfilled epoxy matrix composites", Polym., 37(1), 47-51. [In Korean]
19 Czigany, T., Vad, J. and Poloskei, K. (2005), "Basalt fiber as a reinforcement of polymer composites", Period. Mech. Eng., 49(1), 3-14.
20 Deak, T., Czigany, T., Tamas, P. and Nemeth, C. (2010), "Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents", Polym. Lett., 4(10), 590-598.   DOI
21 Dong, W., Liu, H.C., Park, S.J. and Jin, F.L. (2014), "Fracture toughness improvement of epoxy resins with short carbon fibers", J. Industrial. Eng. Chem., 20(4), 1220-1222.   DOI
22 Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J. and Hui, D. (2015), "A short review on basalt fiber reinforced polymer composites", Compos. Part B. Eng., 73, 166-180.
23 Eskizeybek, V., Avci, A. and Gulce, A. (2014), "The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures", Compos. Part A Appl. Sci. Manuf., 63, 94-102.   DOI
24 Fowkes, F.M. (1962), "Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces", J. Phys. Chem., 66(2), 382-382.   DOI
25 Kaelble, D.H. (1970), "Dispersion-polar surface tension properties of organic solids", The J. Adhesion, 2(2), 66-81.   DOI
26 Galpaya, D., Wang, M., George, G., Motta, N., Waclawik, E. and Yan, C. (2014), "Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties", J. Appl. Phys., 116(5), 053518   DOI
27 Gojny, F.H., Wichmann, M.H., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H. and Schulte, K. (2006), "Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites", Polymer, 47(6), 2036-2045.   DOI
28 Karaipekli, A., Bicer, A., Sari, A. and Tyagi, V.V. (2017), "Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes", Energy Convers. Manag., 134, 373-381.   DOI
29 Kim, S.H., Heo, Y.J., Park, M., Min, B.G., Rhee, K.Y. and Park, S. J. (2018), "Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites", Compos. Part B. Eng., 153, 9-16.   DOI
30 Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G.L. and Wilis, P. (2003), "Electrospinning of continuous carbon nanotube-filled nanofiber yarns", Adv. Mater., 15(14), 1161-1165.   DOI
31 Kolahdouzan, F., Arani, A.G. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct. Int. J., 26(3), 273-287. http://dx.doi.org/10.12989/scs.2018.26.3.273   DOI
32 Kwon, D.J., Shin, P.S., Kim, J.H., DeVries, K.L. and Park, J.M. (2017), "Evaluation of optimal dispersion conditions for CNT reinforced epoxy composites using cyclic voltammetry measurements", Adv. Compos. Mater., 26(3), 219-227.   DOI
33 Quagliarini, E., Monni, F., Lenci, S. and Bondioli, F. (2012), "Tensile characterization of basalt fiber rods and ropes: A first contribution", Constr. Build. Mater., 34, 372-380.   DOI
34 Lee, Y.I., Kim, S., Lee, K.J., Myung, N.V. and Choa, Y.H. (2013), "Inkjet printed transparent conductive films using waterdispersible single-walled carbon nanotubes treated by UV/ozone irradiation", Thin Solid Films., 536, 160-165.   DOI
35 Lee, S.O., Rhee, K.Y. and Park, S.J. (2015), "Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites", J. Industrial. Eng. Chem., 32, 153-156.   DOI
36 Owens, D.K. and Wendt, R.C. (1969), "Estimation of the surface free energy of polymers", J. Appl. Polym. Sci., 13(8), 1741-1747.   DOI
37 Ravindran, A.R., Ladani, R.B., Wu, S., Kinloch, A.J., Wang, C.H. and Mouritz, A.P. (2018), "Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres", Compos. Sci. Technol., 167, 115-125.   DOI
38 Ray, B.C. (2004), "Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites", Mater. Lett., 58(16), 2175-2177.   DOI
39 Ray, B.C. (2006), "Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites", J. Colloid Interf. Sci., 298(1), 111-117.   DOI
40 Ryu, S.K., Park, B.J. and Park, S.J. (1999), "XPS analysis of carbon fiber surfaces-anodized and interfacial effects in fiber-epoxy composites", J. Colloid Interf. Sci., 215(1), 167-169.   DOI
41 Shishevan, F.A., Akbulut, H. and Mohtadi-Bonab, M.A. (2017), "Low velocity impact behavior of basalt fiber-reinforced polymer composites", J. Mater. Eng. Perform., 26(6), 2890-2900.   DOI
42 Sarasini, F., Tirillo, J., Valente, M., Valente, T., Cioffi, S., Iannace, S. and Sorrentino, L. (2013), "Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites", Compos. Part A Appl. Sci. Manuf., 47, 109-123.   DOI
43 Sham, M.L. and Kim, J.K. (2006), "Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments", Carbon, 44(4), 768-777.   DOI
44 Shi, X.H., Xu, Y.J., Long, J.W., Zhao, Q., Ding, X.M., Chen, L. and Wang, Y.Z. (2018), "Layer-by-layer assembled flameretardant architecture toward high-performance carbon fiber composite", Chem. Eng. J., 353, 550-558.   DOI
45 Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct. Int. J., 23(6), 623-631.
46 Sui, C., Pan, Z., Headrick, R.J., Yang, Y., Wang, C., Yuan, J. and Lou, J. (2018), "Aligned-SWCNT film laminated nanocomposites: Role of the film on mechanical and electrical properties", Carbon, 139, 680-687.   DOI
47 Tahouneh, V. (2018), "3-D vibration analysis of FGMWCNTs/phenolic sandwich sectorial plates", Steel Compos. Struct. Int., J, 26(5), 649-662.
48 Tang, L.C., Zhang, H., Han, J.H., Wu, X.P. and Zhang, Z. (2011), "Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes", Compos. Sci. Technol., 72(1), 7-13.   DOI
49 Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes", Science, 277(5334), 1971-1975.   DOI
50 Wang, G., Wei, X., Tanaka, T. and Kataura, H. (2018), "Facile synthesis of guar gum gel for the separation of metallic and semiconducting single-wall carbon nanotubes", Carbon, 129, 745-749.   DOI
51 Xu, Z., Yue, M., Chen, L., Zhou, B., Shan, M., Niu, J. and Qian, X. (2014), "A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature", Chem. Eng. J., 240, 187-194.   DOI
52 Yim, Y.J., Rhee, K.Y. and Park, S.J. (2015), "Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites", Compos. Part B. Eng., 76, 286-291.   DOI
53 Zhang, Y., Yu, C., Chu, P.K., Lv, F., Zhang, C., Ji, J. and Wang, H. (2012), "Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites", Mater. Chem. Phys., 133(2-3), 845-849.   DOI
54 Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834.   DOI
55 Liu, Y. and Wilkinson, A. (2018), "Rheological percolation behaviour and fracture properties of nanocomposites of MWCNTs and a highly crosslinked aerospace-grade epoxy resin system", Compos. Part A Appl. Sci. Manuf., 105, 97-107.   DOI