• 제목/요약/키워드: Equivalent Resistance

검색결과 663건 처리시간 0.022초

현장시험에 의한 고조파 해석용 등가회로 모델링에 관한 연구 (A Study on the Equivalent Circuit Modeling for Harmonics Analysis by Field Tests)

  • 김경철;최종기;백승현;김종욱
    • 조명전기설비학회논문지
    • /
    • 제18권4호
    • /
    • pp.60-67
    • /
    • 2004
  • 비선형 부하의 증가로 3상 4선식 배전계통을 채용하는 중성선에는 많은 중성선 고조파 전류가 관측되고 있다. 또한 접지 임피던스는 고주파가 있는 중성선 전류에 영향 끼친다고 알려져 있다. 현장에서 실측한 고조파 전압과 전류, 그리고 대지 고유 저항률과 접지 저항을 토대로 고조파 해석용 등가 회로를 구성하였다. MATLAB과 CDEGS 프로그램으로 시뮬레이션 하여 수치와 파형으로 적절한 결과를 도출하였다.

Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

  • Che, Yanbo;Jia, Jingjing;Yang, Yuexin;Wang, Shaohui;He, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1759-1768
    • /
    • 2018
  • The energy density, power density and ohm resistance of battery change significantly as results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter identification method of the equivale6nt circuit model with 3 R-C branches based on the test database of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as updating of available capacity, charging and discharging tests at different rates and relaxation characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to ensure the validity of the model, the least square method based on variable forgetting factor is adopted for optimizing to complete the identification of equivalent model parameters. By comparing the simulation data with measured data for charging and discharging experiments of Li-ion battery, the effectiveness of the full life cycle database and the model are verified.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

Fire Resistance Characteristics of Firewall Structure Associated with Impact Damage Induced by Explosion

  • Hye Rim Cho;Jeong Hwa Yoo;Jung Kwan Seo
    • 한국해양공학회지
    • /
    • 제37권3호
    • /
    • pp.99-110
    • /
    • 2023
  • When a fire accident accompanied by an explosion occurs, the surrounding firewalls are affected by impact and thermal loads. Damaged firewalls due to accidental loads may not fully perform their essential function. Therefore, this paper proposes an advanced methodology for evaluating the fire resistance performance of firewalls damaged by explosions. The fragments were assumed to be scattered, and fire occurred as a vehicle exploded in a large compartment of a roll-on/roll-off (RO-RO) vessel. The impact velocity of the fragments was calculated based on the TNT equivalent mass corresponding to the explosion pressure. Damage and thermal-structural response analyses of the firewall were performed using Ansys LS-DYNA code. The fire resistance reduction was analyzed in terms of the temperature difference between fire-exposed and unexposed surfaces, temperature increase rate, and reference temperature arrival time. The degree of damage and the fire resistance performance of the firewalls varied significantly depending on impact loads. When naval ships and RO-RO vessels that carry various explosive substances are designed, it is reasonable to predict that the fire resistance performance will be degraded according to the explosion characteristics of the cargo.

Thrust Analysis and Experiments on Low-Speed Single-Sided Linear Induction Motor

  • Jeong, Jae-Hoon;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won;Lim, Jaewon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.230-235
    • /
    • 2017
  • When the characteristics of a linear induction motor (LIM) are analyzed using finite element analysis (FEA), it is desirable to set the voltage source as an input. If the voltage source is set as an input in FEA, the leakage inductance and primary resistance of the equivalent circuit must be entered by direct calculation, and the magnetizing inductance and secondary reaction effects are directly considered in FEA. Exact calculation is necessary because the primary winding resistance and leakage inductance directly entered will have a significant effect on the LIM output. Therefore, in this study, we accurately calculated the primary leakage inductance and analyzed the resulting LIM characteristics. We calculated the leakage inductance using an analytical equation and FEA, and we confirmed the accuracy by comparing the results with the value experimentally calculated using a manufactured model. We also analyzed the instrument performance and thrust of the LIM as a function of the difference in the leakage inductance. Finally, we present the conclusions on the precise analysis based on the calculation of the leakage inductance.

커패시턴스 내부저항을 고려한 태양광용 Boost 컨버터에 대한 MPPT 제어 알고리듬 고찰 (A Study of MPPT Control Algorithm for Boost Converter of Photovoltaic System Considering Capacitor Equivalent Series Resistance)

  • 최주엽;유권종;이동기;이기옥;정영석;김기현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 2001
  • Photovoltaic systems normally use a maximum power point tracking (MPPT) technique to continuously deliver the highest possible power to the load when variations in the insolation and temperature occur. A simple method of tracking the maximum power points (MPPs) and forcing the boost converter system to operate close to these points is presented through deriving small-signal model and transfer function of boost converter. This paper aims at modeling boost converter including equivalent series resistance of input reservoir capacitor by state-space-averaging method. In the future, properly designed controller for compensation will be constructed for maximum photovoltaic power tracking control.

  • PDF

LiF 음극 버퍼층을 사용한 폴리머의 효율 향상에 관한 임피던스 분석 (Impedance spectroscopy analysis of polymer light emitting diodes with the LiF buffer layer at the cathode/organic interface)

  • 김현민;장경수;이준신;손선영;박근희;정동근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.277-278
    • /
    • 2005
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymer light emitting diodes (PLEDs) with the LiF cathode buffer layer. The single layer device with ITO/MEH-PPV/Al structure can be modeled as a simple parallel combination of resistor and capacitor. Insertion of a LiF layer at the Al/MEH-PPV interface shifts the highest occupied molecular orbital level and the vacuum level of the MEH-PPV layer as a result the barrier height for electron injection at the Al/MEH-PPV interface is reduced. The admittance spectroscopy measurement of the devices with the LiF cathode buffer layer shows reduction in contact resistance ($R_c$), parallel resistance ($R_p$) and increment in parallel capacitance ($C_p$).

  • PDF

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Effect of Non-Idealities on the Design and Performance of a DC-DC Buck Converter

  • Garg, Man Mohan;Pathak, Mukesh Kumar;Hote, Yogesh Vijay
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.832-839
    • /
    • 2016
  • In this study, the performance of a direct current (DC)-DC buck converter is analyzed in the presence of non-idealities in passive components and semiconductor devices. The effect of these non-idealities on the various design issues of a DC-DC buck converter is studied. An improved expression for duty cycle is developed to compensate the losses that occur because of the non-idealities. The design equations for inductor and capacitor calculation are modified based on this improved expression. The effect of the variation in capacitor equivalent series resistance (ESR) on output voltage ripple (OVR) is analyzed in detail. It is observed that the value of required capacitance increases with ESR. However, beyond a maximum value of ESR (rc,max), the capacitor is unable to maintain OVR within a specified limit. The expression of rc,max is derived in terms of specified OVR and inductor current ripple. Finally, these theoretical studies are validated through MATLAB simulation and experimental results.

커패시터의 ESR을 고려한 Quasi Z-소스 인버터의 임피던스 네트워크 설계 (Designing Impedance Network at Quasi Z-Source Inverters by Considering ESR in the Capacitor)

  • 양종호;전태원;이홍희;김흥근;노의철
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.453-460
    • /
    • 2012
  • This paper proposes the method to design the parameters of an impedance network at three-phase QZSI(quasi Z-source inverter) by considering an equivalent series resistance (ESR) in the capacitor. The equations of both two capacitor voltages and two inductor currents are derived at three operating modes of the QZSI. The capacitor voltage ripples caused by the ESR in the capacitor at the transition state of operating modes are calculated. Based on the ripples of both the capacitor voltages and inductor currents, the optimal values of capacitor and inductor are designed. The simulation studies using PSIM and experimental results with DSP are carried out to verify the performance of design method.