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Parameter Identification of 3R-C Equivalent Circuit Model Based 
on Full Life Cycle Database

Yanbo Che†, Jingjing Jia*, Yuexin Yang*, Shaohui Wang* and Wei He**

Abstract – The energy density, power density and ohm resistance of battery change significantly as 
results of battery aging, which lead to decrease in the accuracy of the equivalent model. A parameter 
identification method of the equivale6nt circuit model with 3 R-C branches based on the test database 
of battery life cycle is proposed in this paper. This database is built on the basis of experiments such as 
updating of available capacity, charging and discharging tests at different rates and relaxation 
characteristics tests. It can realize regular update and calibration of key parameters like SOH, so as to
ensure the reliability of parameters identified. Taking SOH, SOC and T as independent variables, 
lookup table method is adopted to set initial value for the parameter matrix. Meanwhile, in order to 
ensure the validity of the model, the least square method based on variable forgetting factor is adopted 
for optimizing to complete the identification of equivalent model parameters. By comparing the 
simulation data with measured data for charging and discharging experiments of Li-ion battery, the 
effectiveness of the full life cycle database and the model are verified.

Keywords: Li-ion battery, Battery management system, Equivalent circuit model, State of health,
Available capacity, State of charge

1. Introduction

Energy shortage and environmental pollution have 
grown up to be a hot issue that the whole world is facing 
and should be solved urgently. As the core of energy 
storage system and electric vehicles, batteries have drawn 
wide attentions and been widely used. [1-2]. Reliable, 
efficient and safe operation of Li-ion batteries largely is
dependent on monitoring and management of battery 
management system (BMS). One of core functions of BMS 
is to accurately calculate state of charge (SOC) and state of 
health (SOH) of batteries, which is totally dependent on 
equivalent model of batteries [1-3].

An accurate model of batteries could be used not only to 
provide technical support for BMS, but also to predict 
battery performance, and to design battery pack and battery 
control system [3]. However, with a complicate electro-
chemical reaction process, li-ion battery shows intense 
nonlinear and time-varying characteristics, thus it’s very 
difficult to build an accurate model. In addition, the 
difference of materials for anode and cathode, application
environment, rate of charging and discharge, even batteries 
aging status will also seriously affect the accuracy of a 
model [1-4].

Today, two commonly used models of li-ion batteries
are electrochemical model and equivalent circuit model 
[3]. The electrochemical models reflect the chemical 
reaction characteristics inside the batteries with electrical 
components or mathematical models. As the chemical 
reactions in batteries are uncontrollable, with strong 
uncertainty, and with complex nonlinear relations, the 
electrochemical model and its calculation process are 
complex and difficult to realize. Moreover, since the 
dynamic characteristics of batteries are neglected in 
electrochemical models, the accuracy in predicting dynamic
voltage is also worse. Even with certain achievements, the 
simplified electrochemical models proposed in [3] and [5] 
are still not suitable for embedding into actual BMS systems, 
due to their complex calculation process. The equivalent 
circuit models simulate dynamic characteristics of batteries 
using linear varying parameter. Although the accuracy is 
lower than electrochemical models, they are widely used 
in real-time system for SOC estimation on account of 
their clear principle, simple structure and simple calculation
[1-4].

Commonly used equivalent circuit models of Li-ion 
batteries include Rint model [6], PNGV model, Randles 
model, RC model, and so on [3]. The first two models are 
single in circuit structures, poor in flexibility and limited in 
accuracy. By contrast, Randles model and RC model are 
flexible and extensible, and can be selected according to 
practical application. But the establishment of Randles 
model depends on experimental data by electrochemical 
impedance spectroscopy (EIS). Consisting of several resistor 
and capacitor (RC) pairs in series, the RC models are more 
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versatility. The more the number of RC pairs in series is, 
the higher the order n is, and the higher accuracy is. At 
the same time, the complexity and computational cost are 
correspondingly increased [1, 3]. In this paper, a 3R-C 
equivalent circuit model is adopted to balance the model 
accuracy and complexity requirements.

The SOH represents the extent of a battery's aging, 
usually refers to the attenuation of the rated capacity of a 
battery. When 80% of the rated capacity is reduced to, 
the battery is considered to have reached its end of life [7, 
8]. The aging of batteries will lead to changes in the 
parameters such as energy density, power density, and 
internal resistance, so as to affect the model accuracy [7]. 
These effects will be more pronounced with the increase of 
service years of batteries. It needs a multi time scale and 
data to measure SOH for which changes slowly as 
compared with SOC. Consequently, in a long-term use of 
power batteries, the coupling relationship between SOC 
and SOH is often neglected [7-9]. The accurate on-line 
estimation of available capacity of batteries is a key 
technical problem that needs to be solved urgently. 
Analysis of the relationship between available capacity 
and SOC of a battery, accurately modeling according to its 
degradation properties, precisely predicting its performance 
and estimating SOC are the guarantee of safe and reliable 
operation of batteries, and also hot topics of current 
research [1-10].

Ryan Ahmed et al. [8] proposed an aging test method for 
Li-ion batteries, establishing automobile model, simulating 
user’s behaviors, testing batteries charging and discharging 
recycle performance, and building an aging feature 
database. Although many achievements have been made, 
the laboratory environment for these tests was different 
from the actual condition and working environment of 
batteries. Avnish Narula et al. [9] proposed testing and 
modeling the aging feature of LiFePO4//Graphite cells at 
low temperature using a simple charge-discharge cycle 
with constant current rate spanning multiple C-rates (1C, 
2C and 4C) and temperatures (0℃, -10℃ and -15℃). At 
present, study on aging characteristics of batteries mainly 
concentrated in the laboratory stage, lacking persuasiveness
of practical application. The problem of online accurate 
estimation of battery available capacity is still not really 
solved. In this paper, it is proposed to establish a life cycle 
database for Li-ion batteries based on the real-time 
updating of aging status (available capacity).

Accurate parameter identification is the key factor of 
precise modeling. The commonly used methods of parameter 
identification include Extended Kalman Filter (EKF) [10], 
Least Square method [11], look-up table method based on 
experimental database [8], and parameter identification 
based on electrochemical characteristics [12]. The traditional
Extended Kalman Filter method is suitable for state 
estimation of linear dynamic system [10]. But Li-ion 
battery has nonlinear characteristics. At the same time, 
with the increase of the size of identified parameters, 

both the dimension of the system and the amount of 
calculation increase, which is not conducive to 
engineering implementation. The Least Square algorithm 
can be used for identification, off-line or on-line, and is 
easy to realize. And the identified system is characterized 
with un-biasedness, consistency and convergence. However, 
as the amount of system operation data increases, the least 
square method will encounter data saturation, which will 
lead to the parameters cannot be accurately tracked for 
the time-varying system. In this paper, the Least Squares 
algorithm with forgetting factor driven by online data is 
proposed to determine parameters of the equivalent circuit 
model with 3 R-C branches.

In short, to establish accurate Li-ion battery model, 
we must start from the battery equivalent circuit model, 
the available capacity updates and online parameter 
identification considering the available capacity updates of 
SOH and SOC. At present, the online identification method 
based on the extended Kalman filter algorithm can achieve 
the accurate simulation of the dynamic terminal voltage 
variation of Li-ion power battery, but it ignores the battery 
temperature change of a single sampling time [14]. As 
for the battery model, more flexibility can be increased 
by setting additional R-C in the equivalent circuit, but this 
also makes the parameter estimation more complex [15].

To accurately represent the influence of aging state on 
parameters of battery model, a parameter identification 
method of 3R-C equivalent circuit model based on the test 
database of battery life cycle is proposed. First, the 3R-C 
equivalent circuit model is constructed, and variables of 
identification parameters and input data are identified. 
Secondly, the full life cycle test database of Li-ion batteries 
is established, based on experiments such as updating of 
available capacity, charging and discharge tests at different 
rates and relaxation characteristics tests. Then, the method 
is proposed for parameter identification of the equivalent 
circuit model with 3 R-C branches, which combines 
Lookup table and the Least Squares algorithm based on 
forgetting factor, driven by online data such as voltage, 
current and temperature. Finally, the validity of this method 
was verified by comparing data of test and simulation.

2. Equivalent Circuit Model with 3 R-C 

Branches

To accurately describe external characteristics of 
batteries and design a reliable SOC estimation model, BMS 
based on battery model has attracted extensive attention 
from electric vehicle manufacturers and the academic 
circles [1]. The BMS structure based on battery model is 
shown in Fig. 1. The processing unit can realize functions 
such as estimating SOC, real-time updating of available 
capacity, on-line estimation of internal resistance, calculation
of OCV-SOC curve, data test and calculation on relationships
between temperature and capacity.
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Fig. 1. BMS structure based on battery model

Fig. 2. Equivalent circuit model with 3 R-C branches of 
batteries

With the degradation of the state of health (ageing), 
the internal resistance of batteries increases and available 
capacity attenuates, which lead to significant biases in 
the model parameters [7-9]. A more accurate model is 
needed to ensure the effectiveness of simulation. The 3R-C 
equivalent model of batteries can balance the accuracy and 
computational complexity requirements, and its working 
principle is shown in Fig. 2. In Fig. 2, VBatt is the terminal 
voltage of Li-ion battery; VOC is the battery open circuit 
voltage, which is a nonlinear function of SOC and is 
represented by a controllable source; IBatt is the charging 
current of Li-ion battery, and it’s negative when discharge; 
Ccap is available capacity; R0 represents ohm resistance, 
and Rn and Cn are the polarization resistance and 
polarization capacitance of Li-ion battery.

The mathematical relation between output voltage and 
input current can be obtained by Kirchhoff’s law and 
Laplace transform.
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Associated with aging occurs, unknown parameters of 

the equivalent circuit model with 3 R-C branches such as 
R0, R2, R3, C1, R1, C2 and C3, will change significantly. 
A comprehensive battery life cycle test database is of great 
importance for accurate modeling. Map Eq. (2) from S 
plane to Z plane using bilinear transformation 
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Where △ t is the system sampling interval time. The 
equations on Z plane obtainedare.
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The final equations are obtained by
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Where ai (i=1, 2…8) is the identification coefficients, Vt,k

is the terminal voltage., Voc,k is the open circuit voltage , 
and IBatt,k is the value of current IBatt at time k respectively. 
To sum up, input data matrix and parameter matrix of 3RC 
equivalent circuit model are given by.
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The system equations can be simplified as

y
k k k
= Φ θ (9)

Where yk is the output variable, Φk is the input data 
variables matrix and θk is the parameter variable matrix of 
the system.

3. Establishment of Life Cycle Test Database

The development of key algorithms in BMS depends on 
the quality of test data. An accurate and systematic test data 
of battery life cycle will help the BMS optimization.

The flow chart of the life cycle test database 
establishment of Li-ion battery is shown in Fig. 3. The 
independent variables are determined by collecting the 
battery temperature, updating the battery SOH and SOC. 
The dependent variables, including R0, R1, C1, R2, C2, R3, 
C3, and Voc, are measured by DC internal resistance tests 
and relaxation characteristics tests to form a complete 
database. The database also contains key parameters and 
experimental data, such as self-discharge data, charge 
and discharge characteristic data, and OCV-SOC relation 
characteristic data.

Fig. 3. Flow chart of life cycle database establishment

3.1 online Capacity updating

Because of its influence on 3R-C equivalent model 
parameters, aging status (residual capacity) online updating 
is crucial for improving model accuracy. During the service 
course of Li-ion batteries, there are three states: static, 
charging and discharge [16]. Online updating of residual 
capacity is classified into updating in charging state and 
updating in static state. The flow chart of capacity online 
updating is shown in Fig. 4.

The open circuit voltage in static equilibrium was 
recorded using the clock function of the BMS, when the 
battery is in static state, like the P1 and P2 points shown 
in Fig. 5. The current maximum capacity available is 

Fig. 4. Flow chart of capacity updating online

Fig. 5. Capacity updating in static state
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calculated from the capacity integral and VOC after a 
stationary period, and the capacity variation △Q between 
P1 and P2 is recorded at the same time. Thus,

0
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t
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n
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Where Qn and Qmax respectively represents the rated 
capacity and the residual capacity of li-ion battery, and i(t)
is the discharge current.

When the li-ion battery is in hibernation or shutdown 
mode, i.e. in a static state, it does not need to increase self-
discharge correction model, as an accurate corresponding 
relation between the open circuit voltage VOC and SOC
exists, and VOC reflects the influence of self-discharge on 
SOC. In addition, the SOC estimation of a battery in the 
static state can provide an accurate initial value for the 
current integration method in charging state. Once batteries
operate into the charging mode, current integration method 
plays a major role, updating SOC regularly.

When the battery aging, the released capacity during
the process from P1 to P2 is calculated and capacity data 
are updated between these two points by recording the 
voltage VOC1 and VOC2 in a static state for points P1 and P2 
respectively. In this way, capacity data in the entire 
EEPROM of BMS are updated.

Terminal voltage VBatt (t) is affected by aging of battery 
with loads as a result of capacity degradation and V-I 
characteristics change affecting by the aging of battery.

With the aggravation of aging process, the VBatt (t) 
increases irregularly during charging and discharging, as 
shown in Fig. 6, and battery will approach the charging and 
discharging threshold voltage more quickly.

The chemistry performance of li-ion batteries is stable in 
constant current constant voltage (CCCV) charging process, 
and BMS can record the time when meeting equilibrium 
before and after the battery charging.

During the charging process of an aged battery, SOC is 
specified as 100% when the charge cut-off voltage is 
reached after constant voltage charging, and SOC is 

recalculated using correspondence curve between updated 
VOC and capacity.

The battery capacity identification module will online 
update Qmax, the maximum available capacity, in different 
measuring voltage ranges.

max

100
ch

sisf

Q Q
SOC SOC

= ´
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where SOCsf and SOCsi represent the SOC in static state 
before and after charging, respectively, and Qch represents 
the integral of the current during charging stage (Ah).

In this paper, the aging characteristics of batteries are 
simulated by frequent charging and discharging at given 
temperature, so as to shorten the test cycle.

3.2 SOC calculation

The SOC is estimated by the combination of current 
integration method and open circuit voltage method, that is 
to say, using the open circuit voltage method when the 
voltage status can accurately reflect the battery capacity, 
otherwise, choosing the current integration method.

3.2.1 Open circuit voltage method

When the li-ion battery is quietly placed for a long 
period of time, the open circuit voltage has an exact 
corresponding relationship with the SOC, so it’s suitable 
for calculating SOC. The relation between the measured 
voltage, the open circuit voltage, internal resistance and 
current is given in Eq. (13). The BMS can measure the 
charge and discharge current IBatt and the terminal voltage 
VBatt, obtain the batteries OCV-SOC curve by estimating 
the value of R(T, SOC, SOH).

( ) ( )T SOC SOHBatt BattOC T SOC SOH
V V I R= - ´

， ， ， ， (13)

At present, the R(T, SOC, SOH) estimation problem is solved 
mainly by establishing a reasonable impedance model of 
batteries. As shown in Fig. 7, charging and discharging 
experiments of Li-ion battery are carried out with current 
of 0.05C under the same temperature. For the same SOC 
condition, the internal resistances in the charging mode 
and discharging mode are approximately equal. The 
relationship between the measured terminal voltage and 
VOC are presented in Eqs. (14) and (15), for charging and 
discharging respectively. VOC can be deduced on 0.05C 
current as formula (16).

_ ( )_ Batt ch T SOC SOHBatt ch ocV V I R= + ´
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( )_ _ T SOC SOHocBatt dch Batt dch
V V I R= + ´
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where VBatt_ch and VBatt_dch are the measured terminal Fig. 6. Capacity updating in charging state
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voltages for charging and discharging state, respectively.

3.2.2 Current integration method

The current integration method is characterized with 
local high precision, which calculates the current integral 

value 
1

( )
k

k
i t dt

-ò from the time k-1 to time k, through 

accurately measuring the current i(t) that flows through the 
battery pack during that time period. It’s necessary to 
determine the initial SOC of batteries and efficiency 
coefficient η at present discharge rate. The SOC can be 
obtained by 

11
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The SOC is calculated to have higher accuracy based on 
the capacity update data, and the equation is
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Where Qn is the rated capacity of the battery which 
measuring methods determined by the types and 
characteristics of the core; and i(t) refers to the current 
flowing through the battery, and is positive when charging.

3.3 DC internal resistance tests

R0 reflects the DC internal resistance property of the 
battery, which tends to increase with the increase of the 
number of cycling and aging of the battery. The OCV-SOC 
test data stored in BMS should be modified according to 
the change tendency of internal resistance, because of the 
estimation accuracy of SOC is directly affected by the 
estimation accuracy of R0.

The response of DC internal resistance R0 to pulse 
current is relatively fast, but the polarization resistances Rn

and polarization capacitances Cn(n=1, 2, 3) have relaxation 
characteristics, such as the pulse response characteristics

shown in Fig. 8 of the measured terminal voltage by the 
action of impulse electric current.

The R0 of the battery is calculated by impulse current 
experiment. The li-ion battery with nominal capacity of 
4.1 Ah is charged at room temperature with discharge 
current at different rates (0.05C, 0.1C, 0.2C and 0.5C) and 
different voltage range, as shown in Fig. 8, so as to 
improve the estimation accuracy of R0. The ohmic 
resistance R0 for battery voltage within the range between 
3.35V and 3.42V is calculated according to formula (1), 
and the measurement data are shown in Table 1.

Table 1. Parameter R0 under different charge C rate

C Vst Vchrg Tstandby D V R0

0.05C 3.354 3.359 10min 5mV 25mΩ

0.1C 3.354 3.365 10min 11mV 27.5mΩ

0.2C 3.354 3.377 10min 23mV 28.7mΩ

0.5C 3.355 3.414 15min 181mV 29.5mΩ

R0 is a function of SOC, T, and SOH.

0
3 ( , , )R Lookuptable D SOC T SOH=

R0 is updated through online calculation, and the 
internal resistances of each voltage point within the cut-
off charging and discharging interval are stored as arrays
in the EEPROM chip of BMS. During the operation of 
the battery, the data matrix of internal resistance is 
updated continuously, providing parameters supporting the 
estimation of VOC.

3.4 Relaxation characteristics test

Rn and Cn (n=1, 2, 3) represent voltage relaxation 
properties of V-I characteristics with the relaxation time 
constant τ = RnCn. Due to the complexity of the battery 
relaxation characteristics, Rn and Cn are determined and 
corrected by analyzing and comparing the response 
characteristics data of battery terminal voltage, based on 
the equivalent model with 3 R-C branches constructed in 
Simscane software. Both Rn and Cn are functions of SOC, 

Fig. 7. Voltage curve at 0.05C charge-discharge rate Fig. 8. Battery voltage response characteristics under pulse 
currents
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T, and SOH.

3 ( , , )nC Lookuptable D SOC T SOH=
3 ( , , )nR Lookuptable D SOC T SOH=

The current characteristic of Cn satisfies icn=Cn × dV/dt, 
and the voltage characteristic of Rn satisfies VRn=i × Rn. 
The circuit equation is established with Simscane software. 
It is difficult to estimate the Rn and Cn on line. Usually, the 
database is constructed by collecting specific parameters of 
Rn and Cn, which are related to SOC and determined in the 
experiment.

3.5 parameter model

When the remaining capacity of li-ion batteries is below 
80% of the rated capacity, the parameter models of R0, R1,
C1, R2, C2, R3, C3 and VOC in the equivalent circuit model 
with 3 R-C branches are as follows. The VOC model 
contains voltage characteristic data associated with the 
current temperature, SOH and SOC. The VOC model is built 
by look-up table, as shown in Fig. 9.

R0 reflects the immediate response characteristics of 
voltage related to the current temperature, SOH and SOC. 
The R0 model is established by look-up table, as shown in 
Fig. 10.

Polarization resistances (R1, R2 and R3) and polarization 
capacitances (C1, C2 and C3) are related to temperature, 
SOH and SOC. The model is established by look-up table, 

as shown in Fig. 11. The voltage drop and power 
consumption of polarization resistances are calculated 
according to the current. The power consumed is converted 
into heat to calculate the temperature change of the battery.

4. Parameter Identification Driven 

by On-line data

The parameter identification method, driven by real-time 
measured current, voltage and temperature data of batteries,
can be used to update the model parameters online. The 
method of parameter identification driven by on-line data 
updates and calibrates parameters by using data stored in 
BMS, which is different from the traditional method.

The parameters of the battery model are vulnerable to 
the effects of aging. However, the least square method 
based on forgetting factor algorithm is able to overcome 
the uncertainty of model parameters through regular 
calibration and updating, so as to accurately capture the 
real-time characteristics of the system. To ensure the 
accuracy of the equivalent circuit model with 3 R-C 
branches, the least square method based on forgetting 
factor algorithm is adopted with the following equation: 

,k k k Ls k
y e= +Φ θ (19)

Fig. 9. VOC data model

Fig. 10. R0 data model

R1                     C1

R2                    C2

R3                               C3

Fig. 11. Data model of Rn and Cn



Parameter Identification of 3R-C Equivalent Circuit Model Based on Full Life Cycle Database

1766 │ J Electr Eng Technol.2018; 13(4): 1759-1768

k
Φ

y
k k k
= Φ θ

,Ls k
K

k
θ

k
Φ

,Ls k
e

1 2 8
[ , , . . . . . . , ]a a a

0 , 0
ˆ ˆ ˆ[ ]

k k Ls k k k k
K y= + -θ θ Φ θ

,t k
V

, ,Ls k t k k k
e V= -Φ θ

0k
θ

0k
θ

1

, , 1 , 1

, , , 1

[ ]

1
[1 ]

T T

Ls k Ls k k k Ls k k

Ls k Ls k k Ls k

K P P

P K P

m

m

-

- -

-

ì = +
ï
í

= -ï
î

Φ Φ Φ

Φ

Batt
I

, 1 , 2 , 3 , , 1 , 2 , 3
1

t k t k t k Batt k Batt k Batt k Batt k
V V V I I I I

- - - - - -
é ù
ë û

Fig. 12. Flow chart of online parameter identification 
based on forgetting factor

Where ,Ls k
e  represents stationary white noise with zero 

mean value. The gain formula of the optimization 
algorithm is expressed by 

1
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Where μ is a forgetting factor, KLs,k is the algorithm gain, 
and PLs,k is the error covariance matrix of state estimation. 
θk0, the initial value of system parameter variables θk, is 
determined by look-up table method, and the parameter 
variables are optimized by calculation ,Ls k

e  and positive 
feedback.

1 , 1
ˆ ˆ ˆ[ ]

k k Ls k k k k
K y

- -
= + -θ θ Φ θ (21)

According to Eqs. (8), (20) and (21), the Flow chart of 
online parameter identification based on forgetting factor 
is determined, as shown in Fig. 12. Based on the voltage, 
current and temperature data obtained from real-time 
sampling, the input data variables are constructed.

Independent variables including T, SOH and SOC are 
determined by regular updating and calibration of the BMS. 
The model parameter variables are determined to provide 

the initial value for the least square method, based on the 
look-up table method of life cycle database. At the same 
time, the gain covariance matrix calculated by the data 
variable matrix is combined with voltage error to optimize 
parameter variables, and the equations of the 3R-C 
equivalent circuit model are finally determined.

5. Case Study

The simulation and measurement of li-ion batteries
under pulse charging and discharging are compared and 
analyzed. The parameters of the li-ion batteries used in 
tests are shown in table 2.

The input signals for the equivalent model with 3 R-C 
branches of li-ion batteries are shown in Fig.13, including 
current signal and ambient temperature signal. The current 
signal is the pulse current for charging and discharging, 
which pulse width is usually set at 2% to 5% of the rated 
capacity. In low SOC stage, narrower discharge pulse 
width is usually used, so as to obtain better mutation 
parameters in the circuit. The temperature signal is the 
external temperature of the battery.

The simulation data including terminal voltage, SOC 
and temperature state of the 3R-C equivalent model of 
the li-ion battery are compared with the measured data 
respectively, as shown in Fig. 14. The simulation 
waveforms and the measured waveform of open circuit 
voltage VOC and SOC are matched well with errors ratio 
less than 0.5%. Although there is slightly difference
between the simulated and measured waveforms for
temperature, model accuracy is still satisfied. As a result,
the 3R-C equivalent model based on the life cycle database 
of the li-ion battery has higher accuracy.

Table 2. Performance parameters of the li-ion battery

Performance index Value Performance index Value

working voltage (V) 3.6 cycling life (times) 600~1200
rated capacity 

(Ah)
50

self-discharge rate 
(%/month)

6

gravimetric energy 
density (wh/kg)

160 memory effect nothing

volumetric energy (wh/L) 270 Security low
working temperature 

(℃)
-20~60 pollution nothing

Fig. 13. Input data of simulation model
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(a) Open circuit voltage Voc

(b) SOC 

(c) Battery temperature

Fig. 14. Comparison of measured and simulated outputs

6 Conclusion

The energy density, power density and ohm resistance 
change significantly with the battery aging, which greatly 
affect the accuracy of the equivalent circuit model. 
Therefore, accurate modeling considering the influence of 
battery aging is essential for effective BMS design.

1) An online updating method is proposed to update the 
residual capacity of the li-ion battery in the charging state 
and static state. This method not only addresses the 
problem of accurate on-line estimation of battery residual 
capacity, but also provides a test database of battery life 
cycle for the equivalent circuit model with 3 R-C branches, 
to lay the foundation for the accuracy of the model.

2) The model parameters are identification by look-up 
table method by taking T, SOH and SOC as independent 
variables, and driven by real-time measurement of current, 

voltage and temperature. And the parameter matrix is 
optimized by the least square method based on the 
forgetting factor. This method regularly updates and 
calibrates the model parameters based on the test database 
stored in BMS. By comparing the simulation data with 
measured data, the effectiveness of the full life cycle 
database and the parameter identification method are 
verified.
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