• Title/Summary/Keyword: Equipment Durability

Search Result 165, Processing Time 0.03 seconds

A Study on the Durability Analysis of Underground parking lot and User Awareness on apartment -Focusing on the Bundang New Town- (공동주택 건축물의 지하주차장 내구성 분석 및 사용자 인식 연구 - 분당 신도시를 중심으로 -)

  • Suhr, Myong-Suk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.727-734
    • /
    • 2021
  • The purpose of this study is to analyze the perception of the residents of the new city by examining the consciousness of the occupants to understand the characteristics of the residents of the city of Bundang. As a result of evaluating and analyzing the durability by visual inspection and some equipment tests at the site of the on-site investigation, it was found that there is a problem with the quality, and continuous maintenance is required to improve the durability and usability of the apartment house. In particular, many cracks appearing in the rapidly deteriorated part should be repaired promptly, and a systematic plan should be formulated and carried out. In the apartment housing perception survey of Bundang new city residents, about 93.4% showed above-average satisfaction, and 43.4% showed a favorable preference toward the residential area.

A study on the development of life test equipment for eco-robot for collecting recycling products (재활용품 회수용 환경로봇 수명시험 장치 구성에 관한 연구)

  • Kang, B.S.
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • Eco-robot for collecting recycling products is the machine which collects non-industrial wastes such as cans, PET bottles and etc. to reuse them as recycling resources. This eco-robot is operated in the condition that it should compress and hold various products without knowing their geometric shapes and material properties. For this reason reliability problems like malfunction or failure. comes to emerge, but the reliability test conditions to assess its performance and durability have not been founded yet. Therefore in this research failure mechanism of the eco-robot was analyzed and life test equipment which can reproduce actual usage conditions was developed. The compression levels in the life test were determined by measuring the crushing force acting on test products and Furthermore the test specimens which have equivalent shape and material properties with those of cans and PET bottles were proposed by simulating the deformation characteristics so that the actual compression conditions were set up in the test.

STUD Welding on High Hardness Armor Steel of KWV (차륜형장갑차 고경도장갑강에 대한 스터드 용접의 적용)

  • Cho, Hwan-Hwi;Shin, Yong-cheol;Yi, Hui-jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.567-573
    • /
    • 2016
  • GMAW and GTAW processes have been used for welding of equipment mounting pads during decades. For improving the mobility and survivability of KWV(Korean Wheeled Vehicle), various types of equipment are required and numbers of pads for welding were increased. In this research, for improving productivity of mounting pads welding process, new technology of stud welding was studied. In this study, mechanical properties of stud weldment were investigated to compare with those of GMAW weldment. Also, research of stud weldment durability was carried out and proved its fatigue strength under the condition of KWV's 32,000 km load profile.

Equipment Improvement for Field Application of Very-Early-Strength Latex-Modified Concrete (초속경라텍스개질 콘크리트 현장적용을 위한 장비개선)

  • Choi Sung Yong;Kim Ki Heun;Park Won Il;Yun Kyong Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.769-772
    • /
    • 2004
  • Very-Early-Strength Latex-Modified Concrete(VESLMC) provides the repairing material with short curing time as well as excellent bond strength, flexural strength and impermeability against water and chloride. In 2001, VESLMC introduced in Korea and improved superior material through research and development on material properties and durability. In 2003, the field test progressed for study problems of VESLMC field application. This paper introduced equipment improvement for bridge deck repair save both repair time and labor, while producing quality VESLMC structures.

  • PDF

Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures

  • Changyou Wang;Mostafa Habibi;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • This research investigates the application of novel functionally graded small-scale materials (FGSMs) in sport and sports structures through an engineering design lens. Functionally graded materials (FGMs) offer tailored material properties, promising enhanced performance and durability. Utilizing an interdisciplinary approach, this study explores the integration of FGSMs in sports equipment and infrastructure. Design considerations specific to sports engineering are emphasized, including lightweight, high-strength materials capable of withstanding dynamic loads. Advanced manufacturing techniques, such as additive manufacturing and nanotechnology, enable precise control over material composition and microstructure. Computational modeling is employed to evaluate the mechanical behavior and performance characteristics of FGSM-based components. Through case studies and comparative analyses, the study showcases the potential of FGSMs to revolutionize sports equipment and structures, offering improved performance, safety, and sustainability. This research contributes to the advancement of sports engineering by exploring the design and application of FGSMs in sport and sports structures.

The effects of carbon nanotubes on improving Tennis Racket Performance and resistance based on Nanotechnology

  • MingYang Xie;Rui Zhang;M. Shokravi
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.157-165
    • /
    • 2024
  • This paper discusses the importance of carbon nanotubes (CNTs) in enhancing performance and resistance of tennis rackets with the application of nanotechnology. This paper discusses how nanomaterials work toward making the equipment lighter, stronger, and more durable by combining CNTs with composite materials in Tennis Rackets. Distinctive properties of the CNTs, such as the very high strength-to-weight ratio and exceptional mechanical resilience, have been exploited in racket performance optimization for better power transmission, increased control on shots, and improved durability. Resistance to wear and tear is discussed in terms of the life of a CNT-enhanced tennis racket and its continued performance with time. The findings imply that the CNTs increase the security and overall performance of tennis rackets, hence promising further innovation in sports technology equipment and the various performances expected from users.

A Study on the Ground Reinforcement and Impermeable Effect by McG (McG(맥) 주입공법에 의한 지반보강 및 차수효과에 관한 연구)

  • Chun, Byung-Sik;Jung, Jong-Ju;Chung, Chang-Hee;Do, Kyung-Yang;Do, Jong-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.352-361
    • /
    • 2006
  • The grouting method is widely used in construction to reduce permeability and reinforce the ground. If the cement and grout material are not mixed well in the injection tip equipment, an opposite flow and Interception state of the chemical grouting can occur. McG method installs a special grouting device to allow better mixing of the grouting material and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS that lowers $Na_2O$ and thereby increases durability is developed by gel-forming reaction material. In this study, the seepage state and unconfined compressive strength of the injection material using the special injection tip equipment is tested. The results of laboratory and field tests clearly demonstrate that the strength increases and permeability decreases using the McG method.

  • PDF

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

A experimental study about plasma ion treatment to improve hardness of electro-polished surface (전해연마면의 표면경도 향상을 위한 플라즈마 이온질화 처리법에 관한 실험적 연구)

  • Kim, Jin-Beom;Hong, Pil-Gi;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • The size and prospects of the domestic semiconductor equipment market are increasing every year. In the case of various parts used inside semiconductor equipments, high durability such as high strength and abrasion resistance is demanded. Particularly, the gases used in semiconductor production processes are toxic. In order to prevent such toxic gas leakage, a precision processing technique and a surface treatment technique for preventing corrosion are required. Electro-polishing is an electro-chemical method of polishing a metal surface to make it smooth and polished. Electro-polishing is mainly used in the finishing process of metal surface. Unlike mechanical polishing, electro-polishing is used in many fields, such as fine chemical etching equipment, since no damaged layer or burr, fine polishing groove and particles are generated. However, in order to withstand the gas used in the semiconductor equipment, the parts must have high corrosion resistance. However, the surface hardness generally become lowered through electro-polishing. Therefore, in this study, surface hardness were experimentally observed before and after electro-polishing. Then, a method of improving hardness by preparing a nitrided layer by plasma ion nitriding treatment.

A Study on the Step-Up Converter with the New Topology Method (내구성이 개선된 발전용 가스터빈 온도센서 개발에 관한 연구)

  • Lee, Young-Jun;Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1175-1186
    • /
    • 2020
  • In this study, the problem is analyzed, and methods of improvement are presented. For evaluating the performance of the proposed EGT sensor, a complex environment test equipment has been developed to test both high temperature and vibration conditions at the same time. This equipment evaluates the accuracy and response time of the EGT sensor. In the results of the comparison test of the complex environment test equipment of heat and vibration, the existing sensor showed a carbonization problem, and the proposed sensor showed no problem. Therefore, it is expected that the improved EGT sensor will be able to be applied to various industrial fields, including gas turbines for power generation.