• 제목/요약/키워드: Equilibrium finding

검색결과 132건 처리시간 0.021초

CONVERGENCE ANALYSIS OF THE EAPG ALGORITHM FOR NON-NEGATIVE MATRIX FACTORIZATION

  • Yang, Chenxue;Ye, Mao
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.365-380
    • /
    • 2012
  • Non-negative matrix factorization (NMF) is a very efficient method to explain the relationship between functions for finding basis information of multivariate nonnegative data. The multiplicative update (MU) algorithm is a popular approach to solve the NMF problem, but it fails to approach a stationary point and has inner iteration and zero divisor. So the elementwisely alternating projected gradient (eAPG) algorithm was proposed to overcome the defects. In this paper, we use the fact that the equilibrium point is stable to prove the convergence of the eAPG algorithm. By using a classic model, the equilibrium point is obtained and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the eAPG algorithm are obtained, which can accelerate the convergence. In addition, the conditions, which satisfy that the non-zero equilibrium point exists and is stable, can cause that the algorithm converges to different values. Both of them are confirmed in the experiments. And we give the mathematical proof that the eAPG algorithm can reach the appointed precision at the least iterations compared to the MU algorithm. Thus, we theoretically illustrate the advantages of the eAPG algorithm.

바이오텐세그리티 구조 시스템의 형상 결정 (Shape Finding of Bio-Tensegrity Structural System)

  • 양대현;김미희;강주원;김재열
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.25-34
    • /
    • 2018
  • This study investigated a bio-tensegrity structural system that combines the characteristics of a general tensegrity structural system with a biological system. The final research objective is to accomplish a changeability for the structural system as like the movement of the natural bio-system. In the study, we present a shape finding procedure for the two stage bio-tensegrity system model inspired by the movement pattern of animal backbone. The proposed system is allowing a dynamic movement by introducing the concept of "saddle" for the variable bio-tensegrity structure. Several shape finding analysis example and results are presented and shows a efficient validation and suitability.

변형된 동적이완법을 이용한 케이블-네트 구조물의 형상해석 (Shape Finding of Cable-Net Structures by Using Modified Dynamic Relaxation Method)

  • 하창우;김재열;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.51-58
    • /
    • 2000
  • Dynamic relaxation method is a shape finding analysis method for flexible structures by introducing the dynamic equilibrium equation. However, it is difficult for shape finding to estimate the most appropriate values for the mass and damping on each shape because the values are random one. In this study, the unit mass, the unit damping and the principal direction stiffness are utilized to avoid the random values, and the Newmarks assumption is introduced during the dynamic analysis. By introducing variant time increment method presented, the convergence time is reduced, that is, it can be reduced the total times for analysis.

  • PDF

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

텐세그리티 구조물의 형상탐색 기법 비교 (A Comparison of the Form-Finding Method of Tensegrity Structures)

  • 이승혜;이재홍
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.313-320
    • /
    • 2014
  • 텐세그리티 구조물은 인장력을 받는 연속된 케이블 안에 압축력을 받는 스트럿이 결합된 형태로 구성된다. 텐세그리티 구조물은 자기 응력 상태를 갖는 프리스트레스 핀 접합 구조물에 속한다. 텐세그리티 구조물 설계의 핵심은 평형 배열상태를 구하는 일명 형상탐색 과정이다. 본 논문에서는 세 가지의 효과적인 텐세그리티 구조물의 형상탐색 기법을 제안하였다. 형상탐색과정을 수행하면 평형상태의 내력 밀도와 그에 대응하는 위상을 얻을 수 있다. 이 때 평형상태를 형성하는 적절한 내력밀도 값을 얻기 위해 유전자 알고리즘을 결합한 내력밀도법이 사용되었다. 수치해석 예제를 통해 제안 알고리즘의 효율성을 입증하였다.

승산기 및 제산기 없는 저비용 고정밀 COA 비퍼지화기 (A Cost-Effective and Accurate COA Defuzzifier Without Multipliers and Dividers)

  • 김대진;이한별;강대성
    • 한국지능시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.70-81
    • /
    • 1998
  • 본 논문은 저비용이면서 정확한 비퍼지화 연산을 수행하는 새로운 COA(Center of Area) 비퍼지화기를 제안한다. 제안한 COA 비퍼지화기의 정확성은 비퍼지화 연산시 소속값뿐 아니라 소속 함수의 폭을 고려함으로서 얻어진다. 제안한 COA 비퍼지화기의 저비용성은 비퍼지화 연산시 요구되는 나눗셈 연산을 좌.우측 모멘트의 균형점을 찾는 것으로 대신함으로서 얻어진다. 제안한 COA 비퍼지화기는 승산기가 부가적으로 필요하고 모멘트의 균형점을 찾는데 많은 시간이 걸리는 단점이 있다. 첫번째 단점은 승산기를 확률적 AND 연사으로 대치함으로서 극복되고, 두번째 단점은 모멘트의 균형점을 빠르게 탐색하는 coarse-to-fine 탐색 알고리즘에 의해 해결된다. VHDL 시뮬레이션을 통해 제안한 COA 비퍼지화기를 트럭 후진 주차 문제에 적용한 결과 기존의 COA 비퍼지화기보다 향상된 평균 주행 거리 특성을 보임을 확인하였다.

  • PDF

블록의 탑재 안전성을 위한 초기 평형 자세 탐색 방법 연구 (A Study on the Methods for Finding Initial Equilibrium Position of a Lifting Block for the Safe Erection)

  • 전도현;노명일;함승호;이혜원
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.297-305
    • /
    • 2018
  • In a shipyard, block lifting is an important process in the production of ships and offshore structures. Block lifting is a sensitive process because lifting blocks have to be erected with exact positions and orientations. If we use a numerical method for the process, it is important to find tensions of wires and positions of equalizers to maintain the initial equilibrium position of the block. At this time, equations of motion of the block should be solved to calculate the initial equilibrium position of the block. Because the solving technique changes according to the number of equalizers, a suitable equation for the corresponding problem is required. In this study, three types of equations are proposed to find the initial equilibrium position of the block according to the number of equalizers. The Newton-Raphson's method is used to solve nonlinear simultaneous equations and the optimization method is used to determine the appropriate solution to the undetermined problem. To evaluate the applicability of the proposed methods, the dynamic simulations are performed using the tensions calculated from the proposed methods, and the results are discussed. The results show that the proposed methods can be effectively used to determine initial equilibrium position of the block for the block lifting.

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.

비선형 내력법을 이용한 단일 공기막의 형상 탐색 (Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method)

  • 손수덕;하준홍;이승재
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

토사지반에 설치된 역 T형 옹벽의 저판형상이 활동거동에 미치는 영향 (Effects of Base Shape of Cantilever Retaining Wall in Soil Foundation on the Sliding Behavior)

  • 유남재;이명욱;김영길;이종호
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.135-145
    • /
    • 1999
  • This thesis is to investigate the sliding behavior of cantilever retaining wall by using the commercially available program of FLAC to simulate its behavior numerically. Cantilever retaining walls with flat base, sloped base and base with shear key, uniform surcharges being applied on the surface of backfill, were investigated to figure out appropriate location of shear key beneath the base of wall and, thus, its applicability to field condition was assessed by comparing the analyzed results to each other. On the other hand, previously performed centrifuge model test results (Eum, 1996) were analyzed numerically with FLAC to compare test results with respect to characteristics of load-settlement of surcharges and load-lateral movement of wall. Based on the failure mechanism observed during centrifuge tests, limit equilibrium method of finding the ultimate load inducing the sliding failure of wall was used to compare with values of the ultimate load obtained from conventional method of limit equilibrium method. Therefore, appropriate location of shear key was determined to mobilize the maximum resistance against sliding failure of wall.

  • PDF