• Title/Summary/Keyword: Equilibrium Shape

Search Result 246, Processing Time 0.025 seconds

Sectional analysis of stamping processes using Equilibrium approach (평형해법에 의한 스탬핑 공정의 단면 해석)

  • Yoon, J.W.;Yoo, D.J.;Song, I.S.;Yang, D.Y.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

Thermochemical Performance Analysis of Liquid Rocket Nozzle (액체로켓 노즐의 열화학적 성능 해석)

  • Choe,Jeong-Yeol;Choe,Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.85-96
    • /
    • 2003
  • For a design of rocket engine nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be used as an efficient design tool for predicting maximum thermodynamic performance of the nozzle. 10 this study, a chemical equilibrium flow analysis code was developed for the design of hydrocarbon fueled rocket engines. 10 oder to understand the thermochemical characteristics occurring in a nozzle through the expansion process, such as recombination of chemical components and the accompanying energy recovery, chemical equilibrium flow analysis was carried out for the KSR-III rocket engine nozzles together with frozen flow and non-equilibrium flow analyses. The performance evaluation based on the present KSR-III nozzle flow analyses has provided an understanding of the thermochemical process in the nozzle and additionally, it has confirmed that the newly designed nozzle shape modified to have a reduced exit area ratio is an adequate design for obtaining an increased ground thrust.

Displacement tracking of pre-deformed smart structures

  • Irschik, Hans;Krommer, Michael;Zehetner, Christian
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • This paper is concerned with the dynamics of hyperelastic solids and structures. We seek for a smart control actuation that produces a desired (prescribed) displacement field in the presence of transient imposed forces. In the literature, this problem is denoted as displacement tracking, or also as shape morphing problem. One talks about shape control, when the displacements to be tracked do vanish. In the present paper, it is assumed that the control actuation is provided by imposed eigenstrains, e.g., by the electric field in piezoelectric actuators, or by thermal actuators, or via analogous physical effects, such as magneto-striction or pre-stress. Structures with a controlled eigenstrain-type actuation belong to the class of smart structures. The action of the eigenstrains can be conveniently characterized by actuation stresses. Our theoretical derivations are performed in the framework of the theory of small incremental dynamic deformations superimposed upon a statically pre-deformed configuration of a hyperelastic solid or structure. We particularly ask for a distribution of incremental actuation stresses, such that the incremental displacements follow exactly a prescribed trajectory field, despite the imposed incremental forces are present. An exact solution of this problem is presented under the assumption that the actuation stresses can be tailored freely and applied everywhere within the body. Extending a Neumann-type solution strategy, it is shown that the actuation stresses due to the distributed control eigenstrains must satisfy certain quasi-static equilibrium conditions, where auxiliary body-forces and auxiliary surface tractions are to be taken into account. The latter auxiliary loading can be directly computed from the imposed forces and from the desired displacement field to be tracked. Hence, despite the problem is a dynamic one, a straightforward computation of proper actuator distributions can be obtained in the framework of quasi-static equilibrium conditions. Necessary conditions for the functioning of this concept are presented. Particularly, it must be required that the intermediate configuration is infinitesimally superstable. Previous results of our group for the case of shape control and displacement tracking in linear elastic structures are included as special cases. The high potential of the solution is demonstrated via Finite Element computations for an irregularly shaped four-corner plate in a state of plain strain.

Shape Finding of Cable-Net Structures by Using Modified Dynamic Relaxation Method (변형된 동적이완법을 이용한 케이블-네트 구조물의 형상해석)

  • 하창우;김재열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.51-58
    • /
    • 2000
  • Dynamic relaxation method is a shape finding analysis method for flexible structures by introducing the dynamic equilibrium equation. However, it is difficult for shape finding to estimate the most appropriate values for the mass and damping on each shape because the values are random one. In this study, the unit mass, the unit damping and the principal direction stiffness are utilized to avoid the random values, and the Newmarks assumption is introduced during the dynamic analysis. By introducing variant time increment method presented, the convergence time is reduced, that is, it can be reduced the total times for analysis.

  • PDF

Design of Magnetic Systems for SNUT-79 Tokamak (SNUT-79 토카막의 자장 계통 설계)

  • Cheol Hee Nam;Sang Hee Hong;Kie Hyung Chung;Sang Ryul In
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • A toroidal-field (TF) coil with a pure tension D-shape curve is designed for the confinement of high-temperature plasmas in the SNUT-79, which is a tokamak being built at Seoul National University. A toroidal assembly of 16 D-shape TF coils is designed to produce the magnetic field of up to 3T, of which ripples appear to be below 4% of the average toroidal field in the plasma region. Exact positions and currents in six equilibrium coils distributed symmetrically in the z=0 plane are found by the solution of a set of linear equations which is transformed from a Fredholm integral equation of the first kind. The decay indices resulted from equilibrium field indicate that the stability condition for vertical and horizontal displacements is satisfied.

  • PDF

Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges (사장교 시스템의 실용적인 초기형상 결정법)

  • Song, Yo-Han;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • A rational method for determination of initial cable forces in cable-stayed bridges without complicated nonlinear analysis is presented. Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and vending moments of the deck and pylon. A presented method utilizing the idea of force equilibrium organizes initial shape analysis for each types of cable-stayed bridges. The results of that analysis were compared to several existing methods for 2D numerical examples. And for 3D actual bridges, the improved TCUD method was performed to demonstrate the accuracy of this study.

Effects of elastic strain on the agglomeration of silicide films for electrical contacts in integrated circuit applications

  • Choy, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.95-100
    • /
    • 2004
  • This paper reports a potential problem in the electrical performance of the silicide film to silicon contacts with respect to the scaling trend in integrated circuit (IC) devices. The effects of elastic strain on the agglomeration of the coherent silicide film embedded in an infinite matrix are studied employing continuum linear elasticity and finite-difference numerical method. The interface atomic diffusion is taken to be the dominant transport mechanism where both capillarity and elastic strain are considered for the driving forces. Under plane strain condition with elastically homogeneous and anisotropic system with cubic symmetry, the dilatational misfit and the tetragonal misfit in the direction parallel to the film thickness are considered. The numerical results on the shape evolution agree with the known trend that the equilibrium aspect ratio of the film increases with the elastic strain intensity. When the elastic strain intensity is taken to be only a function of the film size, the flat film morphology with a large aspect ratio becomes increasingly unstable since the equilibrium aspect ratio decreases, as the film scales. The shape evolution results in a large decrease in contact to silicon area, and may deteriorate the electrical performances.

A Study on the Hydrostatic Mooring Stability of Submerged Floating Ellipsoidal Habitats

  • Pak, Sang-Wook;Lee, Han-Seok;Park, Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.328-334
    • /
    • 2019
  • Underwater architecture in providing a comfortable living space underwater is mandated to survive prevailing environmental loads, especially hydrostatic ambient water pressure exerted on the structure of individual habitat hulls at depth and hydrodynamic fluctuation of external forces that perturb the postural equilibrium and mooring stability of the underwater housing system, for which the design including the hull shape and mooring system constraint the responses. In this study, the postural stability of a proposed underwater floating housing system with three vertically connected ellipsoidal-shape habitat hulls of different sizes are theorized and calculated for hydrostatic stability, using MATLAB in the volumetric integration of a hull and the weight of operational loads under assumed scenarios. The assumptions made in the numerical method to estimate the stability of the habitat system include the fixed weight of the hulls, and their adjustable loads within operational limits for the set meteorological oceanic conditions. The purpose of this study was to numerically manipulate a) The buoyancy and b) The adjusted center of mass of the system within the range of designed external and internal load changes, by which the effective mooring system capability and postural equilibrium requirements were argued with the quantitative analysis.

An Assessment of Safety Factor for Tunnels Excavated in a Weak Rock Layer (연약 암반층에 굴착된 터널의 안전율 평가)

  • You, Kwang-Ho;Park, Yeon-Jun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.47-57
    • /
    • 2000
  • It is difficult to calculate factor of safety of a tunnel by applying any analytical method based upon limit equilibrium method since the shape of failure plane in tunnel analysis can not be easily assumed in advance. To cope with this shortcoming, a method is suggested to calculate safety factor of a tunnel by numerical analysis using strength reduction technique. A circular tunnel excavated in a homogeneous rock was selected as an example problem and factors of safety were calculated for no-supported, partly-supported, and completely-supported cases respectively. Meshes with 3 different sizes were examined for a sensitivity analysis. For the verification of the proposed method, a limit equilibrium analysis was conducted and compared with the numerical analysis. The proposed method herein can be used to calculate factor of safety of a tunnel regardless of tunnel shape or geological conditions, and thus can contribute for the improved design and stability assessment of tunnels.

  • PDF

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.