• 제목/요약/키워드: Equation of plane

검색결과 752건 처리시간 0.026초

분자동력학적 방법에 의한 저 메너지 As 이온 주입에 따른 Si 기판의 결함 형성 거동에 대한 컴퓨터 모사 실험 (Computer Simulaton of Defect Formation Behaviors of Crystal-Silicon on the Low Energy Arsenic Implantation by Molecular Dynamics)

  • 정동석;박병도
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.259-264
    • /
    • 2000
  • In this study, we quantitatively measure the ion ranges of arsenic with energies ranging from 10 KeV to 100 KeV, implanted at $3^{\circ}$, $9^{\circ}$ $15^{\circ}$ the (100) plane, and the damage created during ion implantation. To obtain detailed information of ion range and damage distributions in low energy region where elastic collisions dominate the slowing down process, molecular dynamics computer simulation was performed and compared to the existing results. The effects of implant energy and degree on damage generation are present. The number of vacancy were calculated from the deposited energy using Kinchin-Pease equation. In the energy range 10 keV-100 keV, simulations show that the number of Frenckel pairs produced by As-ion bimbardment is 9 and incident angle dependence of the vacancy was the same but defects were distributed at different depth.

  • PDF

발전소용 고압 바이패스 밸브 내부 유동해석 (Analysis of Flow through High Pressure Bypass Valve in Power Plant)

  • 조안태;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측 (Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

SNUT-79 토카막의 자장 계통 설계 (Design of Magnetic Systems for SNUT-79 Tokamak)

  • Cheol Hee Nam;Sang Hee Hong;Kie Hyung Chung;Sang Ryul In
    • Nuclear Engineering and Technology
    • /
    • 제16권2호
    • /
    • pp.89-96
    • /
    • 1984
  • 현재 서울대학교 원자핵공학과에서 제작중인 SNUT-79 토카막 장치에서의 고온 플라즈마의 구속을 위해서 순인장력 D형 곡선을 가진 토로이달 자장 코일을 수치 해석적 방법으로 설계하였다. 16개의 D형 토로이달 코일 뭉치는 플라즈마가 없는 경우 자장의 세기가 3T가 되도록 설계하였다. 토로이달 리플은 플라즈마영역에서 평균 토로이달 자장의 4%이하이다. 6개로 된 평형 코일의 위치와 전류 값을 Fredholm 제1종 적분 방정식을 선형 방정식으로 변환하여 얻었다. 평형 자장의 곡률도는 플라즈마 루프의 수직 수평 방향의 변위에 대한 안정화 조건을 만족시켰다.

  • PDF

밀리미터파 대역의 실내 채널 모델링 분석 (Analysis of Indoor Channel Modeling in Millimeter-Wave Band)

  • 이원희;표성민
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.53-58
    • /
    • 2016
  • 밀리미터파 실내 무선통신시스템을 위한 전파 채널 특성의 분석을 위하여 광선 추적 기법을 제안하였다. 반사파는 밀리미터파의 초단파 특성상 거친 표면의 매질을 포함하여 분석하였고, 투과파는 유전체 매질을 통과한 경우를 고려하였다. 밀리미터파 대역에서의 전송되어 수신된 전력 레벨의 지도와 사각형 방안의 송신기로부터의 RMS 지연확산분포 결과를 나타내었다. 바닥면의 표면 거칠기 인자는 0과 0.13으로 가정하여 수신 파워 레벨을 빈방에서 나타내었다. 시뮬레이션 결과 반사계수를 이용한 퓨리스 방정식의 계산은 매우 잘 일치하였다. 시뮬레이션은 어떠한 가구 형태의 크기를 방의 어떠한 곳에 위치 시켜도 계산이 가능하다.

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

INTEGRATED OPTICAL MODEL FOR STRAY LIGHT SUPPRESSION AND END-TO-END PERFORMANCE SIMULATION FOR GOCI

  • Ham, Sun-Jeong;Lee, Jae-Min;Youn, Heong-Sik;Kang, Gm-Sil;Kim, Seong-Hui;Kim, Sug-Whan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.274-277
    • /
    • 2006
  • KARI is currently developing a geostationary ocean color imager (GOCI) for COMS. We report the progress in integrated optical modeling and analysis for stray light suppression and the end-to-end instrument performance verification including in-orbit calibration. The Sun is modeled as the emitting light source and the selected area around Korean peninsular as the observation target that scatters the sun light towards GOCI in orbit. The optical ray tracing employing active geometric scaling was then used for precise characterization of the spatial and radiometric performance at the instrument focal plane. The analysis results show positive reduction in the simulated stray light level with the design improvement including baffles. It also indicates that the ray traced in-orbit radiometric performances are effective tools for the independent assessment of more traditional linear and quadratic equation based estimation of water leaving radiance. The concept of integrated GOCI optical model and the computational method are presented.

  • PDF

잠재적 시간 오차에 따른 현휘의 발생 방지를 위한 최적 블라인드 제어 (Optimum Blind Control to Prevent Glare Considering Potential Time Error)

  • 성윤복
    • 한국태양에너지학회 논문집
    • /
    • 제32권2호
    • /
    • pp.74-86
    • /
    • 2012
  • For the improvement of environmental comfort in the buildings with the blind control, the objective of this study is to prevent the direct glare caused by the daylight inlet. During the process of solar profile prediction, time are significant factors that may cause error and glare during the blind control. This research proposes and evaluates the correction and control method to minimize prediction error. For the local areas with different longitude and local standard meridian, error occurred in the process of the time conversion from local standard time to apparent solar time. In order to correct error in time conversion, apparent solar time should be recalculated after adjusting the day of year and the equation of time. To solve the problems by the potential time errors, control method is suggested to divide the control sections using the calibrated fitting-curve and this method is verified through simulations. The proposed correction and control method, which considered potential time errors by loop lop leap years, could solve the problems about direct glare caused by daylight inlet on the work-plane according to the prediction errors of solar profile. And also these methods could maximize daylight inlet and solar heat gain, because the blocked area on windows could be minimized.