In this paper tried the estimation of parameter using of Cal-Sal functions. System equation given by the linear differential equation is converted into the integral equation, operation matrix for integral of Cal-Sal functions is used to find the estimation of parameter on the given system. Converting linear differential equation to linear algebraic equation, the method presented here computing time and required memory size can be reduced. Therefore real time data process can be possible.
In this study, a plastic hardening constitutive equation for steels of polar class vessels at low temperature is proposed. The equation was derived using the experimental data obtained from tensile tests at room and low temperatures. Tensile tests at low temperature are both costly and time consuming because an expensive cold chamber is necessary and it takes too much time to cool down a specimen to set temperature. Using the proposed plastic hardening constitutive equation the plastic hardening characteristics of steels for polar class vessels at low temperature can be easily predicted from the tensile test results at room temperature.
시간변수에 대하여 불연속성을 주는 시간불연속 Galerkin 방법을 유한요소법으로 해석하였다. 이 방법은 미분방정식 관점에서 지금까지 요소간에 연속성을 준 일반적 유한요소법과 다르게 임의의 시간요소를 선택, 매 시간단계에서 요소경계에 불연속을 허락함으로서 해의 정확성을 높이고 무조건의 안정을 주는 상미분방정식의 해법인 것이다.
International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
/
제3권1호
/
pp.14-22
/
2000
The improved Green integral equation for the calculation of time-harmonic potentials in the radiation diffraction problem about a freely floating body in the presence of moderate or weak current is presented. The forward-speed Green function presented by Brard is used. The correct free surface boundary conditions on the physical free surface are employed as well as an appropriate boundary conditions on the non-physical inner free surface. The default in the existing Green integral equation as well as in the source integral equation is discussed in detail.
For an n ${\times}$ n real matrix X, let ${\Phi}$(X) = X o (X$\^$-1/)$\^$T/, where o stands for the Hadamard (entrywise) product. Suppose A, B, G and D are n ${\times}$ n real nonsingular matrices, and among them there are at least one solutions to the equation (equation omitted). An equivalent condition which enable (equation omitted) become a real solution ot the equation (equation omitted), is given. As application, we get new real solutions to the matrix equation (equation omitted) by applying the results of Zhang. Yang and Cao [SIAM.J.Matrix Anal.Appl, 21(1999), pp: 642-645] and Chen [SIAM.J.Matrix Anal.Appl, 22(2001), pp:965-970]. At the same time, all solutions of the matrix equation (equation omitted) are also given.
해양 식물플랑크톤 일차생산력의 전 지구적 중요성에도 불구하고 자료 처리상의 어려움 때문에 국내에서는 신뢰할만한 자료가 많지 않다. 식물플랑크톤 일차생산력은 시간-수심 적분 과정을 거쳐 최종적으로 단위 면적당 하루 일차생산력을 구하지만, 시간 적분에 대한 연구결과는 많지 않은 편이다. 본 연구에서는 단위 시간당 일차생산력을 시간 적분하여 하루 일차생산력을 계산하는 수학적 모델을 제시하고 새만금호를 대상으로 모델의 실효성을 검정해 보았다. 검정 결과, 시간 적분 모델이 일사량 실측치를 대입하여 합산한 결과와 잘 일치하였다. 일차생산력 계산을 위한 기초 광량 자료는 변화가 심한 일 자료보다 한 달 또는 한 주간 평균 자료를 대입하는 것이 더 신뢰성 있는 결과에 도움이 되는 것으로 판단되었다. 일차생산력 수직적분은 수직적으로 불균일한 식물플랑크톤 분포 때문에 어려움이 있으나, 엽록소 분포를 몇 가지 유형으로 분류하여 수식화한 다음, 각 수식을 시간 적분한 일차생산력 모델과 합성하여 적분하면 해결할 수 있을 것으로 판단된다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제22권2호
/
pp.101-113
/
2018
The dual singular function method(DSFM) is a numerical algorithm to get optimal solution including corner singularities for Poisson and Helmholtz equations. In this paper, we apply DSFM to solve heat equation which is a time dependent problem. Since the DSFM for heat equation is based on DSFM for Helmholtz equation, it also need to use Sherman-Morrison formula. This formula requires linear solver n + 1 times for elliptic problems on a domain including n reentrant corners. However, the DSFM for heat equation needs to pay only linear solver once per each time iteration to standard numerical method and perform optimal numerical accuracy for corner singularity problems. Because the Sherman-Morrison formula is rather complicated to apply computation, we introduce a simplified formula by reanalyzing the Sherman-Morrison method.
비압축성 가정하에 Navier-Stokes 방정식을 이용하여 비정상 점성유동을 수치해석하기 위해서는 매시간 단계에서 타원형 압력 Poisson 방정식의 해를 구해야 하며, 이에 많은 계산시간이 소요된다. 본 논문에서는 직접법을 이용하여 압력 Poisson 방정식을 수치해석하였으며, 분할수 증가에 따른 소요시간 문제를 다루었다. Green 정리를 압력 Poisson 방정식에 적용하면 주어진 문제는 경계치문제로 변환되고, convolution 형의 영역적분은 F.F.T.를 이용하여 계산시간을 단축할 수 있어, 직접법 이용시 소요시간은 경계치문제의 해를 구하는 데에 좌우된다. 직접법의 검증을 위하여 해석해를 알고 있는 경우에 대하여 수치해석하였고, 물체경계조건과 정합문제에 관하여 수치해석 하였는데. 분할수가 (n.n) 시 O($n^{3}$) 미만의 계산시간으로 수치해석할 수 있었다.
In this paper, we propose a new mixed finite element method, called the characteristics-mixed method, for approximating the solution to Burgers' equation. This method is based upon a space-time variational form of Burgers' equation. The hyperbolic part of the equation is approximated along the characteristics in time and the diffusion part is approximated by a mixed finite element method of lowest order. The scheme is locally conservative since fluid is transported along the approximate characteristics on the discrete level and the test function can be piecewise constant. Our analysis show the new method approximate the scalar unknown and the vector flux optimally and simultaneously. We also show this scheme has much smaller time-truncation errors than those of standard methods. Numerical example is presented to show that the new scheme is easily implemented, shocks and boundary layers are handled with almost no oscillations. One of the contributions of the paper is to show how the optimal error estimates in $L^2(\Omega)$ are obtained which are much more difficult than in the standard finite element methods. These results seem to be new in the literature of finite element methods.
이 논문에서는 파랑 하중을 받는 부유식 구조체의 운동 해석에 있어서 시스템 식별 방법을 이용한 상태공간방정식 모델을 수립하고 해석하는 방법을 제안하였다. 상태공간방정식 모델의 수립 방법으로는 주파수영역에서 하중-변위 입출력 관계에 대한 목표 전달함수를 구하고 이에 가장 근접하는 상태공간방정식을 구하는 절차를 제시하였다. 전통적으로 부유식 구조체 운동의 시간영역 해석은 지연함수의 합성곱적분을 포함하는 Cummins 방정식을 시간적분하여 이루어진다. 상태공간방정식 모델은 이러한 시간영역해석을 효과적으로 수행하기 위한 방법의 하나로서 연구되어 왔다. 제안하는 방법에서는 시스템 식별방법인 N4SID 와 전달함수의 분모 및 분자 다항식의 계수를 설계변수로 하는 최적화방법을 사용하여 목표 전달함수에 상응하는 상태공간방정식을 구한다. 제안하는 방법의 적용성을 보이는 예제로서 단자유도 수치모델 및 6자유도 바지의 운동을 해석하였다. 제시하는 상태공간방정식 모델은 주파수영역 및 시간영역에서 모두 기존의 해석결과와 잘 일치하고 시간영역해석에서는 계산의 정확도를 확보하면서 계산 시간을 크게 줄일 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.