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ABSTRACT: The improved Green integral equation for the calculation of time-harmonic potentials in the radiction -diffraction problem
about @ freely floating body in the presence of moderate or weak current is presented The forward speed Green function presented by
Brard 1s used The correct free swrface boundary conditions on the physical free surface are employed as well as an appropriate
boundary condtions on the non-physical inner free surface. The defauit in the existing Green imtegral equation as well as m the source
integral equation 15 discussed m detail.

1. Introduction According to the comparative numerical studies on the wave drift
damping, very large discrepancy between numerical methods has

The wave loads on a large-volume offshore structure without  been found(Grue 1992, Park and Choi 1996, Huijsmans 1996, Lee
the presence of the current, can be calculated by making use of et al 2000}. The cause of the discrepancy is quite ambiguous. The
the solution of the potential boundary value problem in the  effect of the so-called Neumann-Kelvin potential or the steady
frequency domain(John 1950). The tadiation-diffraction potential on  potential has been taken imlo account by some authors while not
the hull of a floating structure can be obtained from the solution  accounted by others; besides, the source integral equation has
of the impraved Green integral equation using Kelvintype Creen  been employed by some aathors which hes been known to be not
function{fHong 1987). appropriate for the so-called surface-piercing body.

When the curent is present, the wave field is modified and it In this paper, the boundary value problem of the
is difficult to formulate the potential problem. In this study, it is  radiation-diffraction potential for a freely floating body in the
assumed that the boundary condifions for the waves are linear and  presence of the uniform horizontal current is solved by making
that the waves are transferred by the cument without deformation,  use of the improved Green integral equation under the assumption
Under the assumpiions, the boundary value problem for the  that the current speed is low for full-shaped bodies and relatively
radiation-diffraction potential in the presence of the uniform  high for fine-shaped bodies positioned parallel with the direction
horizontal current is equivalent to the so called, forward speed  of the curreni(Hong 2000). In other words, it is assumed that the
three dimensional radiarion-diffraction problem in the field of ship  magnitude of the steady potential is as smail as that of the
hydrodynamics. The iime harmonic forward speed Kelvin type  unsteady potential so that the effect due to their coupling may be
three dimensional Green fumction was presented by Brard(1948) neglected. The water depth where the offshore structures are
and various numerical methods based on a soutce imegral  installed s not deep but in this study it is assumed to be deep in
equation wsing this Green function have been presented to order to simplify the compamative numerical studies for the
calculate wave loads and motion of a surface ship advancing n  unsteady potential which will be followed soon. In this way, the
waves(Chang 1977, Bougis 1980, Inglice and Price 1981, Chan cause of the discrepancy mentioned above may be explained in
1990). Unfortunately, it scems that all these three-dimensional  the near future. An approximate method for weak current is also

methods in the frequency domain are not conclusive yet. presented
More recently, in the field of moored body hydrodynamics, it
has been found that the wave drift damping or the increase of 2. Linearized Boundary-Value
the time mean drift force due to the relative cument is similar to Problem in the Frequency Domain
the increase of the resistance of a ship advancing in
waves(Wichers and Sluijs 1979, Huijsmans 1986, Newman 1993), A body is freely floating in the free surface of deep water
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under gravity and in the presence of plane progressive sinuscidal
incident wave of small amplitude o, transferred by a hotizontal
curent with 1miform speed U/, The current speed [/ is asswuned
to be of O(1). Let oxyz be a Cartesian co-ordinate systern
attached to the mean position of the body, with =z vertically
upward , x in the negative direction of the current velocity and
o in the mean waterplane W which is also denoted by the
irmer free surface F,. The body performs simple harmonic
oscillations of small amplitude about itis mean position with
circular frequency ¢ which is equal to the apparent frequency of
incident wave. Tt is assumed that the distarbance of the free
surface is of (}(e) where &, being as small as the wave slope,
is the measure of smallness in the present study.
With the usual assumptions of the incompressible, inviscid fluid
and irrotational flow without capillarity, the fluid velocity 7 can
be given by the gradlemt of a velocity potential ¢  which
satisfies the Laplace equation,

viO=0 {n
in the fluid region.

Under the assumptions given above, ¥ at P in the {luid
region can be decomposed as follows:

OP, H=0s(P)— Ux+ Re{W(P)e ™) 2

where @ denotes a steady potential due o the presence of the

body in the cument, ¥ a complexed-valued unsteady potential
and ¢ the apparent frequency of the incident wave. The velocity

potential of incident wave is as follows:

Py = Re| ¥, e_‘“"f} 3)
where

T, = __acf;_f_ekq12'|‘!(xcosﬁ'+ysm5)l @
for

w={(w,— Uk,cos )70 (5)
and

B, — k_a_c?)ug_gk.,[z—z(st;?'f-yslnl?)] )
far

o=(Uk,cosf— w,) >0 N

whete g is the gravitetional scceleration, £ the angle berween
the phase velocity of the incident wave and the current velocity,
2

wy the circular frequency of incident wave and /&y = B e
g

wavenumber expressed in a relative co-ordinate system g x y 2
attached to the uniform horizontal current as follows:

x=xA U, y=vw, 2=z 3

Here, it should be noted that the magnitude of both @g and ¥

is of O(e).
The equation of the mean free surface is

z={ 9
The free surface boundary condition on z = () is as follows:
L +% V=0 o z=0 (10)
where p denotes the pressure :
Y R
p=—p( FTRR) ) {in

Substituting (2} and (11) into (10} and neglecting second order
quantities, the following free surface boundary conditions for @5

and ¥ can be found respectively:

[UZ%.; +ell1es=0 on z=0 (12)
[(—im—Uaix)z+g—a‘32—]w=0 on z=10 (13)

Under the assumption of small amplitude oscillation, the
displacement  vector ﬁ(M ) of a point M on the wetted
sorface S of the body at its mean position is of ((g). The

. hrd .
expression of A{M) is as Tollows.

AM)=Re{a(Mye ™), MeS {14}
M) = glafek +8x0M, MeS$ (14a)
= gdak’éé_g (14b)

where g,(&=1,2,, 6} denotes complex valved amplitade of

surge, sway, heave, voll, pitch, yaw respeciively and O the
center of rotation of the body.

It should be noted that the time-harmonic quantities correspond

and it will not be
shown hereafter unless its presence is necessary,

— 1wt

to the real part of terms involving e

Applyitg impermeability condition on &, the following body
boundary condition can be found:
(n +6x7) v(@s— Ux+ &)

={u+ Gxn) {(—iva)
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where 7 denotes a unit normal 1o S directed into the fluid
region, at its mean position and (}z,%—_éx—;) the Taylor
expansion of the normal at its instantaneous position.

Neglecting second-order quantities, the following finearized body
boundary condition for @g and ¥ can be found respectively:

a
—a—%‘i =Un on S {6
%‘% = —z'a)?l"'_:rzﬁ- U(ﬁﬁ?’fg’”aﬁnﬂ} on 8 an

With these linearized bowndary conditions on S and on
z={), the unsteady poremtial and the steady potential problems
can be solved indeperdently and the lawer will be dropped from
the present study.

The unsteady potential & can further be decomposed as follows:

= Pyt 0, + W, (18)

where the sum of ¥ and ¥, is lnown as the diffraction

potential and ¥, the radiation potential which can be

decomposed as follows:
W= —io ) 0, ¥y~ Ulay B, - a; W) (19)
Then the body boundary conditions for #,( k=1,2,,,7) are

a¥,

5 = Bk on 5, E=1,213 (20a)
n

] — s s

6% =(epua X OM)-un on S,

#y {20b)

for %£=4,5.6
d

The potentials ¥,{k=1,2,,,7) 2lso satsfy the free surface

boundary condition given by the equation {13):

. LRy J
[(—tw—U=sz) +g5=]1¥,~0 on F,
dx 7z 22)
for k=1,2,,.7
It is also assumed that they vanish at infinity as ;%; where
»* denotes the distance from the body. They rmust also satisfy
the radiation condition presented by Brard(see Appendix D).

3. Review on the Source Integral
Eguation

It has just been shown that the present boundary value problem
is equivalemt to the so called, forward speed three dimensional

radiaiion-Ciffraction problem n the field of ship hydrodynamics.
Therefore it can be solved by making use of the improved Green
integral equation(see Appendix f7)..

Here. we will present brief review on the sowmrce integral
equation. When a body is present in the free swface, the fluid
region D, is bounded by the mean wetted surface of the body
Fy=F—-F and some arbitrary

C axl C, denote the closed

S, the outer free surface
sarface S, at infinity. Let

miersection contours of & with S and S, respectively.

Applying Green’s theorem w the polential @ and the Green
function (¢ over the fluoid region D,, the following Green
integral equation can be cbtained :

1 IG{P.M)
g U+ [ [wn2E AL g
+zfyjcwM)G(P.M)dyM
IR AG(P. M)
g fc{gr(M') Axy
- —3%%'—1 G(P, M) 1dvy

= fj;i%f-ﬂ‘fl G(P. M) s,

23)

Pef

Let ¥ the interior potential defined inside D; bounded by
S and F,. Applying Green’s theorem to &’ and the Green
function & over I}, the following Green integral equation for
p analogous 1o (23) can be obtained:

1y iy AC(PM
Foer- [ [wian 2GRN,
~2iy [ WM GUP, M) dyy
U o 1y DGR M
+ 4 [tran SEEM 24
— S8 p,m) dvy
X
=~ [ [AEOD ipoang,  pes
5 anM
Adding (23) and (24), we have
EELEE) [ [ pion)
BCPM) oo g5y [ L@ (b)— (1) ]
M C

6P myav - L [ 11w 00 -vian)

(25)
DG{P, M) [ JE(M) _ WM ]
SxM axM SxM
_ (M) WM
GP,IYdyy) = f [1-FEIM) ST M)
G(P,M)ds, FeS
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Imposing
TM—-T(MY=0 orn § (26)
and denoting
dEMY  SF(M) _
5nM - 8?.:_“ _'U(M) on S (27)
we have
rp)
§ea AE(M)  8WH{M}
+ o L Ty JG(P M) dvy (28)
= ffsa(M)G(P,M)ds, pes

According to the potential theory, the condition (26) entails the
following conditions .

AWM _ W (M) _
Gl ol 0 oS (294)
d(M) B (M) _y . s (29b)

7y BTy

where 7 is a unit vector tangent to C whose direction afong
which one, traveling in [, would proceed in keeping W to his
left, is defined positive and

forming a right-hand vector tiad 7= T #.

7 @& umit vector tangent to 5

The derivative of ¥ or %' with respect to x, can be

decomposed as follows;

agxM “el 8%TnM nyt aglM T
M M M {30)
T(M) —
4 SrM TM], M=S

Suabstituting (30) into (28) and taking accoumt of (27) (29) and
(295), we have

w(P) + L [ s GR,M(E, - ) dv
5 Jc @D

= ILU(M)G(P,MJQ’S, Pes

Taking the nomnal derivative of {31y on S with respect to the

P, the socalled source iniegral equation is obtained:
aGIP M)

+ f LG(M) 2np ds

field point

a(P)
2

2 —_— —
- [on 2CRML (G Shm, G2

A¥(P)

Fryaat Pes

This integral equation, considered in the strict sense of the
intepral equation, is not complete since the condition (26) is

imposed only on the open boundary S. In fact, it was necessary

o impose the condition (26) over the closed surface
SUF S, Thus, in order to ensure the uniqueness of the

solution, jt is necessary to impose the following condition.

FM)y-F'(M)=0 on F, (33)

T on S.

The condition on S, can be omitted since

vanishes in the limit,
We may think that the condition (33) can be replaced by an
appropriate condition on the inner free surface F,. But, since the

unknown in the equation {32} is the source density o over 5,
it will be extremely difficult to combine the appropriate condition
into the source integral equation. Moreover, it is hard to find an
appropriate condition on the mner free swface F,.

4. Improved Green Integral Equation
for Weak Current

The speed {7 of the cumrent was assumed to be of ({1 ).

Trom now op, we assurme that [7% is of O(z). Then Brard's
Green function can be simplified as follows:

GY(P,M,t) = Re{G(P, M)e '} (34)

where

G(P,M) =GP M) — G(P,.M}+ G{(P,M) (33

G(PM)=— . =01 (36)

11
dr 7,

¥ = {(FCP_-xM)E
(37

1
Hlyp—yu)+(zp— (=120 5, 7=0,1

G P.M) = ﬁr—g(H{+H§} (38)
{.‘?—r {)01 —
s __ 1 7 —
e f_% dﬁfﬂ 7 e gkt =12 (39)
f =l —2(—1"Y Uk cos§— gk
1 (40)
+ivlo— (=D Uk cosgl, =12
t =hlezptrazy+il{xp—ay)cosh
@1

+ (yp—vuisin @]}

where v is an artificial damping parameter infinitely small,
positive, which will determine the path of ntegration in the
complex plane K associated with the varable % shown in the

expressions of H, and H,.



18 Do-Chun Heng

The above Green function G°(P, M) satisfies the folfowing

equations;

VRGP, My =0 for PEM {42)

9 a a L
—0? + U= +g=1) G (P M
(—w=* + sza}‘_P + g é’ap) ({ } @)

=0 for 2yl and =p,<0

The properties of this Green function has been presented by
Grekas(1981). Tt should be noted that the integrand of Hj has

simple pole and therefore the imegration with respect to & can
be done more eamsily compared w that in the Brard’s Green
function having double pole.

The adjoint free srface condition for G'(P, M) is as follows

(— '’ —2mUai + o) (P M
Xp

dz M ( 44)

={ for zp<{0 and zy<0

Applying Green’s theorem to the potential % and the Green
function  (#° over the fluid region [J,, the following improved
Creen integral equation for weak current can be obtained :

% T(PYS[L — 8lzp—0))
+ ffsfifT(M)_aQ%;M—lds

+ 801 — 8(zp—0)] )
2y [ TGP, M)y
= [ 2D G pyas
5 Hu
for P 5TUFR™

where S denotes the positive side of S and F, the

negative side of F;{see Appendix I,

5. Discussions and Conclusion

The improved Green Integral equation which conmins the
cortect boundary conditions on the free surface as well as the
supplementary condition on the inner free surface, for the
potential boundary wvalue problem about the radiation-ciffraction
wave by a freely floating body in the presence of current, has
been presented.

The improved Green Integral equation for a weak current has
been presented too. The latter can represent the weak contribution
of the cument in a comsistent manner while the existing source
integral equation cannot,

Numerical tests which is necessary to validate the present
improved Green integral equations will be followed soon. Since

the kemels of the present integral equations are not square, a
least-square approach should be employed for fheir numerical
solutions.

It will alsc be necessary to employ the B-spline higher-order
panel method rather than the low order panel methods since the
treatrnent of the line integral demands computation of very high
accuracy.

We expect that numetical tests of the present improved Green
integral equations for moderate and weak currents would be done
by many researchers in this field.
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Appendix |. Brard’s Green Function

The Green function derived by Brard(Brard 1948) characterizes
the potential induced at 7 by a pulsating source of unil stength
at M advancing under the free surface with uniform velocity
UE;. The point M is the so-called source point and £ the
field point. It has been obtained as follows:

G(P,M,t) = Re{G{(P, M)e™"') (AL}

where
GPM) =GP M) — G(PM)+ GH(P. M} {(A2)
- _ L 1 .
G =~ - =01 (A3)
= (G
(Ad)
. -
Fvpm vy H{zp— (= 1V2y)%) 7, J=0.1
=L ‘
GAP,M) = e {H,+Hy) {AS)
+f B
H;=f x a’af “elgkdk, i=12 (A6)
D =lo— (-1 Uk cos8]* —
(A7)
+v[w— (=1 """ Uk cos@], =1,2
¢ =klzptay+il (xp—xyicosf
(AB)

+ (yp—yu)sindl}
where p is an arificial damping parameter infinitely small,
positive, which will determine the path of integration in the
complex plane K associated with the variable % shown in the
expressions of M, and .

The function G, is the Rankine-type Green fumction which is
singular when P= M and regular otherwise. The function G,
and (5, are regular for zp<0.

Brard’s Green function satisfies the following equations:

vEG(P, M) =0 fo P*M (AS}

[(—iw —U——) +g ]G(PM)

(A1)

=0 for 2up<0 and zp=(

It has been shown that the radiation condition for G{P, M)
is satisfied when the artificial damping parameter is present in the
denominators [, and D (Hong 1996), Since the Green function

GLP M) is of O(LT'), it tends to zero as ¥ —oo.

The Green fimction (P, M) also satisfies the so-called
adjoint free surface condition

({(—z2e0 U——} +gaz 1G(P, M)
(All)

=0 for zp<D and zx=<0

which can be derived from the free surface condition (A10)
according 1o the reciprocal property of the forward-speed Green
function{Timman and Newman 1962, Brard 1972),

The integrations with tespect to £ in Hy and Ffy can be
done analytically by making use of the complex exponential
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integral F,({) =as shown by Hong(Hong 1978) in his report on
the mdiation problem of a cylinder advancing under the free
surface.  This method of integration was pgenemalized by
Guevel(Guevel et al. 19790 and was applied to the
three-dimensional radiation-diffraction problem with forward speed
by Bougis(Bougis 1980).

Appendix |l. Improved Green Integral
Equation

When a body is present in the free swface, the fluid region
P, is bounded by the mean wetted muface of the body S, the
owier free surface F, = F— F, and some arbitrary surface S
at infinity. Let ¢ and (., denote the closed intersection
comtours of F with § and S.. respeciively. Applying Green’s
theorem to the potential ¥ and the Green function (& over the
fluid region DJ,, the following integral identities can be obtained:

amPy = — [ [ 1w LEEH).

8}:,;; (AIZ)

~%’%10(P,M)]ds, for 254D

where 7 denotes a mit normal to the boundary surface directed
into the fluid region D),.

The number @ in the lefi-hand side of (AI2) takes the value

of 1, % or ) according as the field point P lies inside, on

and ousside the closed suface SUF ,US... The 4€ and 3

ot the boyndary surface denote the densities of sources and
normal  dowblets koown as  the findamental hydrodynamic

singularities, distributed over there,
Since ¥ and (7 tend to zera as ?10; . the integral over S

vanishes in the limit and, in D,, we have

w(P) = ~fj;[w(M)M

e

(A13)
- agjf G2 M) ds~ In for zp<0
where
o = [ [ wi) 2CLLH).
) fF' iy (Al4)

_ i%(l‘ﬂ (P M) ds, 2040
My

Substitution of the free surface condition (A10) and the adjoint
free surface condition (A11) into the nommal derivatives of &
and G in (Al3) respectively, yields

Te=1I+1y (AL5)
where
I, = gZz‘yf[Fp[a'f(M)—m—%%dm
+ 2L Gip an)ds
o (A16)
= ~2ir [ [ 1w 6PN
for zp(0
and
P _0_ _AG(P M)
Iy = g ff.v BxM[qT(M} 0% 3 (A17)

- —3—%%1 GIP M), 2p<D

The 7 in (Al6) js a non-dimensional parameter known as the
Brard number,

~ L,
g (A18)

Application of Stokes’s theorem to (A16) yields

L = =2 [ WODGP Mydvy
- (A19)

257 [ WM)GP, M) dvie, zp <0

where the positive directions around both C and O ame

defined counterclockwise when one would see them from above
the free surface.
The line integral of the product ¥ and (G along C,, vanishes

in the [imit since both & and (G tend to zero as —% and
¥

we have
=2y [ WMIG(P, M)dyy, 2p<0 (A20)
Similarly, application of Stokes’s theorem to (Al7) yields
LA AG(P, M)
I - fc[ Rt = o
= LB G(p )y, 2640
Substitution of (A20) and (A21} into {Al15) yields
j= 2frfc EOMYGP. M) dvy
U AG(P, M)
= Lwan 220 (A2)

~ LB G DY 200

Substituting the fing) expression of J» to the integral relation
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{A13) and wldng account of the poiendal jump atress S, we

can obtain the following Green integral equation for ¥
1 aGP.M
2wy 4 [ [ won G s
+2iy | WM G(P, Mydyy
A IG(P, M)
= Llwan-o

— S Gp, i) v

(A23)

= [ [ 259D o myas,

Oy pes

The derivative of ¥ with respect to x,, can be decomposed as

foilows:
UM ta-[QWM)E;-F BMMITJ}
axM SYJ,M EJIM

FU(M
EirM

428
Mes

+ T,

where 7 is a unit vector tangent fo ( whose direction along
which one, travelng in [J,, would proceed in keeping W to his

left, is defined positive and r a unit vector tangent to S

forming a right-hand vector triad 7= 1% 7.
Substitwtion of (A24) inte (A23) yields

1 . capy 0P MY
T w(py + | [win s
L9y fC TGP, M) dvyy
R AGIPM)
g L[W(M} 3%
;g;.[_a%ﬂgﬂg;
n ﬁ%gﬂl ?,;}G(P,M)]}dyﬂ
M
_ IIMG(P,M)LI’S
S Gy

s aTM —
[ PR Gor ) E - e P S

(A25)

It should be noled that the expression of the Green function in
the line integral can be reduced as follows

G{P,M} =G/ (P,M) onC (AZ6)

since the first and second terms in the right-hand side of (A2)
cancel out when a, = 1.

The equation (A25) is the Green integral equation which
contains the comect free surface boundary conditions(Hong 20009,
However, some boundary conditions are missing in eguation
(A25). According to the theory of integral equation, an integral
equation must contain all the boundary conditions of the boundary
value problem in question. Let the surface in contact with the

fluid be the positive side of the boundary swface and the other
side of the same surface outside [), the negative side of the
surface, The wetted surface will be denoted by S * hereafter.
According to the potential thecry, the potential jump across S
which has been incorporated in (51) implies that the condition
W=1{ is itmposed on S, the negative side of 5. In fact, it
was Decessary to impose W{(P)=( when P lies on the
negative side of the closed suface SIJF S, as it is done

in the Oreen infegral equation with the Rankine-type Green
Function. Thus, in order to ensure the uniqueness of the solution,
it is necessary to impose the following condition.

=0 omn F, (A27)
The condiion on 5, can bhe omitted since ¥ on S,
vapishes in the limit.
The plane &,  denotes the negative side of F, where
z= +¢&, & being an infinitesimal positive number.
B, sioce the integral over the boundary swface F ., was

already replaced by the line imtegral along the waterline (, it is
not desirable to reinfroduce F, into the present Green integral
equation. Instead we are going to find a supplementary condition
for ¥ which can compensate for the condition (A27). To do
this, let us introduce the so-called adjoint inierior boundary vatue
problem  for the intedor potential ¥ defined inside [,
bounded by S~ and F,7 . The plane F,” where z= —g,
denotes the negative side of F, which wes previously denoted

by the waterplane W. Applying Green’s theorem to ¥° and the
Green function & over D, the following integral identities
analogous to0 (Al12) can be obtained:

wipy = [ [, 1wian 2eRM)
— A8 Gip anla,
M

(AZ8)
Zp< G

where % denotes a unit normal to the boundary surface directed
into the outside of the region ).
It is not necessary to solve the boundary value problem for &,

However we will assume that ¥’ satisfies the following

conditions.
¥i=0 on S° (A29)
%ﬁ =0 on S~ (A30)
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[(—iw— UL +adiwi=-0 on F~ (A31)

If the condition (429} is imposed on the closed surface
STUF[, ¥® would vanish identically in /J,. In that case,
the conditions (A30) and (A31) would be satisfied only in the
trivial way. But, here, the mature of the problem demands that
these conditions are satisfied in both the trivial and the non-trivial
ways. Therefore the conditions (A29), (A30) and (A31) are
necessary simdtaneously,

Substituting (A29), (A30) and (A31) for ¥ as well as the
adjoint free surface condition (A11) for the Green fumetion &,
into (A28} and applying Stokes’s theorem to the integral over
F,”, we have

¥ py jzfyfczzr*‘(M}G(P,M)dyM

- fivon 25EA (A32)
—~ 2L P a2 0
where the positive directions around € s defined

counterclockwise when one would see them from above the free
surface as defined previously for the line integral involving #.
Let #° denote the potential on F,” induced by the

hydrodynamic singularities distibuted over S+ JC.
crpn AG(P.M)
we(py =~ [ [ 1w G
— 2T 6P, ) ds

~2;‘ny T(M)G(P, M) dvy, (A3%)

+ [ e 2GR
& JC %y
~ M) G )Yy P = B
Xt

Now we impose the following condition on F, ™

Fi+¥'=0 on F. (A34)

We expect that the condiion (A34) would be the compensation
for the condition (A27).

Substituting (A32} and (A33) into (A34), we have

we(py =~ [ [ 1win 260

OH py

- ﬂai@f_l P, M)\ ds
oy

~ 2y [ W) G, M) dyg (A35)
2
b L [ L 26200
g JC axM
—~ 2P Gp i) 1dve, P F
X
Now we Impose
FM)— F{My=0, Me C {A36)
—QLM—%——ELM = 0, Me O (A37)
%M
Then the equation (A35) becomes as follows:
[ vwn-2ClEaD
s M {A38)

- . Gop ntas =0, P e B

Combining the equation (A38) with (A25), we have the improved

Green integral eguation :
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(A39)



