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ABSTRACT. The dual singular function method(DSFM) is a numerical algorithm to get opti-
mal solution including corner singularities for Poisson and Helmholtz equations. In this paper,
we apply DSFM to solve heat equation which is a time dependent problem. Since the DSFM
for heat equation is based on DSFM for Helmholtz equation, it also need to use Sherman-
Morrison formula. This formula requires linear solver n + 1 times for elliptic problems on a
domain including n reentrant corners. However, the DSFM for heat equation needs to pay only
linear solver once per each time iteration to standard numerical method and perform optimal
numerical accuracy for corner singularity problems. Because the Sherman-Morrison formula is
rather complicated to apply computation, we introduce a simplified formula by reanalyzing the
Sherman-Morrison method.

1. INTRODUCTION

In order to deal with corner singularity solution, let the computational domain Ω be an open
and bounded concave polygon in R2. We assume that Ω has one reentrant corner for simple
explanation. It can be readily applied on multiple reentrant corner domain and is performed
in §4. The goal of this paper is to construct the dual singular function method to solve heat
equation:

ut − µ△u = f in Ω,

u = g on ∂Ω,
(1.1)

with given initial value u(t = 0, x) = h(x) in Ω and thermal diffusivity µ > 0. Although
the given function f is very smooth, the solution of (1.1) have singular behavior near the reen-
trant corner. This corner singularity make lose accuracy of numerical solution throughout the
whole domain. To overcome this difficulty, there are several primary ways. One is locally
adaptive mesh refinement or moving mesh technique. Other ways are so called Singular Func-
tion Method (SFM) (see, e.g., [9]) and Dual Singular Function Method (DSFM) constructed in
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[1, 2, 7, 8]. DSFM for Poisson equation has been introduced in [3, 4] and then it is extended to
solve Helmholtz equations in [10]:

−µ△u+ ku = f in Ω,

u = g on ∂Ω.
(1.2)

Because it is known in [5] that the singular function of heat equation (1.1) can be written by
a linear combination of that of Helmholtz equation (1.2), we can construct DSFM to solve
heat equation (1.1) by combining a time discrete scheme and results in [10]. DSFM has to use
Sherman-Morrison formula which requests linear solver 2 times for any elliptic problem, but
DSFM for heat equation does not need linear solvers per time iteration cost to standard nu-
merical algorithm. Because the Sherman-Morrison formula is rather complicated to apply real
computation, we introduce a simplified version by reanalyzing the Sherman-Morrison formula.

This paper organized as follows. In section 2, we summarize the results of DSFM for
Helmholtz equation in [10], and we establish the relationship between regular part of the solu-
tion and discrete singular functions by analyzing Sherman-Morrison formulation (see Theorem
2.4). We will construct DSFM to solve heat equation (1.1) in section 3 and present several nu-
merical results in section 4.

2. DUAL SINGULAR FUNCTION METHOD TO SOLVE HELMHOLTZ EQUATION

We denote ∂Ω = Γin ∪ Γout, where Γin is part of boundary including reentrant corner and
Γout = ∂Ω− Γin. Let ω be the internal angle of Γin satisfying π < ω < 2π. The singular and
the dual singular functions of Poisson equation are summarized in [3, 4] as

sP (r, θ) := rπ/ωΘ(θ) and sPd(r, θ) := r−π/ωΘ(θ), (2.1)

where
Θ(θ) = c cos(αθ) + d sin(αθ). (2.2)

We note that c and d will be determined to hold the boundary conditions of u near the corner
on Γin. We introduce the following lemma in [3].

Lemma 2.1. The functions sP and sPd is harmonic functions.

The singular function sH ∈ H1(Ω) and the dual singular function sHd ∈ L2(Ω) of Helmholtz
equation (1.2) have to satisfy

−µ△sH + ksH = 0 and − µ△sHd + ksHd = 0. (2.3)

The functions are written by power series

sH(r, θ) = rπ/ω

(
1 +

∞∑
i=1

ki

νi4ii!
∏i

m=1(m+ α)
r2i

)
Θ(θ) (2.4)

and

sHd(r, θ) = r−π/ω

(
1 +

∞∑
i=1

ki

νi4ii!
∏i

m=1(m− α)
r2i

)
Θ(θ), (2.5)
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where Θ(θ) is defined in (2.2). We note here sHd /∈ H1(Ω). Because rβ is in H2(Ω) if β ≥ 1,
the singular parts of (2.4) and (2.5) are only

S(r, θ) := rπ/ωΘ(θ) and Sd(r, θ) := r−π/ωΘ(θ). (2.6)

So we can define singular and dual singular functions as in (2.1). We note here that S(r, θ)
and Sd(r, θ) are not satisfying (2.3) and it is an obstacle to construct DSFM for Helmholtz
equation.

We need to use a cut-off function to be 0 boundary condition, because S(r, θ) and Sd(r, θ)
of (2.6) is not 0 on Γout. To do this, we use notation

B(r1; r2) = {(r, θ) : r1 < r < r2 and 0 < θ < ω} ∩ Ω.

We now define smooth cut-off function ηρ as

ηρ(r) =

 1 in B(0; 12ρ),
p(r) in B(12ρ; ρ),
0 in Ω\B(0; ρ),

(2.7)

with p(r) is a very smooth function and ρ is a parameter determining the range of p(x). Then
the solution u of (1.2) can be rewritten by

u = w + αηρS, (2.8)

where α is called the stress intensity factor and w ∈ H2(Ω) is regular part of solution. The
main idea of DSFM is to find α and w instead of computing u /∈ H2(Ω). We start to construct
DSFM with rewriting the Helmholtz equation by inserting (2.8) into (1.2)

−µ△w + kw + α(−µ△ηρS + kηρS) = f in Ω,

w = g on ∂Ω.
(2.9)

Since ηρ equals 0 identically in Γout and S = 0 on Γin, the function ηρuS becomes 0 on ∂Ω.
So u and w have same boundary values. To derive DSFM for heat equation, we test (2.9) by
v ∈ H1

0 to get

⟨∇w , ∇v⟩+ ⟨kw , v⟩+ α ⟨−µ△ηρS + kS , v⟩ = ⟨f , v⟩ . (2.10)

The variational formulation (2.10) has 2 unknowns (w,α), so we need one more equation and
the equation is

• a single equation, because α is a real number.
• linearly independent to above system.
• not disappeared α.
• computable near the singularity corner.

So we test with the dual singular function Sd(r, θ) /∈ H1(Ω) to obtain

⟨−µ△w + kw , η2ρSd⟩+ α ⟨−µ△ηρS + kηρS , η2ρSd⟩ = ⟨f , η2ρSd⟩ . (2.11)

We have a crucial lemma which is proved in [10].

Lemma 2.2. Dual Singular function Sd has the following properties.



104 D.-K. JANG AND J.-H. PYO

1. Sd ∈ L2 and Sd /∈ H1.
2. ⟨−△ϕ , η2ρSd⟩ = ⟨ϕ , −△η2ρSd⟩, for all ϕ ∈ H1

0 .

In conjunction with Lemma 2.2, (2.11) can be re written by

α =
1

βs
(βf − ⟨w , −µ△η2ρSd + kSd⟩), (2.12)

where βs = ⟨−µ△ηρS + kS , η2ρSd⟩ and βf = ⟨f , η2ρSd⟩. DSFM is an algorithm to solve
the system (2.11) and (2.12).

In order to construct fully discrete algorithm of the system, we introduce finite element space

Vh := {vh ∈ H1
0 (Ω) : vh|K ∈ P(K) ∀K ∈ T},

where P(K) is a polynomial function space degree ≤ p. In light of inserting α in (2.12) into
(2.11), the discrete system becomes wh ∈ Vh and αh ∈ R satisfying, for all vh ∈ Vh,

⟨∇wh , ∇vh⟩ −
1

βs
⟨wh , −µ△η2ρSd + kη2ρSd⟩ ⟨−µ△ηρS + kηρS , vh⟩

+ ⟨kwh , vh⟩ = ⟨f , vh⟩ −
βf
βs

⟨−µ△ηρS + kηρS , vh⟩ .
(2.13)

The matrix form of (2.13) is
(A+ abT )wh = F, (2.14)

where the matrix A is the discrete linear operator of the Hehmholtz equation. Also a, bT and
F in are generated by ⟨−µ△ηρS + kηρS , vh⟩, 1

βs
⟨wh , −µ△η2ρSd + kη2ρSd⟩ and ⟨f , vh⟩−

βf

βs
⟨−µ△ηρS + kηρS , vh⟩, respectively. The linear system (2.14) can be solved by the Sherman-

Morrison formulation in [6]:

(A+ abT )−1 = A−1 − A−1abTA−1

a+ bTA−1a
. (2.15)

The well posedness of (2.13) has been proved and obtain the following finite element approxi-
mation in [10].

Theorem 2.3. Let (w,α) be the solution of (2.9) and w ∈ H2(Ω) ∩H1
0 (Ω). And let (wh, αh)

be the solution of the system (2.12) and (2.13). Then there exists a positive constant h0 such
that h ≤ h0, for all h, satisfying

∥w − wh∥1 ≤ Ch∥f∥0, ∥w − wh∥0 ≤ Ch1+α∥f∥0,

|α− αh| ≤ Ch1+α∥f∥0.

The Sherman-Morrison formulation (2.15) is crucial to solve (2.14), but (2.15) requires lin-
ear solver 2 times and is rather complicated to apply to real computation, especially multiple
singularities problems and time evolution problems like heat equation. So we reanalyze the
Sherman-Morrison formulation (2.15) with solutions uh and zh of

⟨∇uh , ∇vh⟩+ ⟨kuh , vh⟩ = ⟨f , vh⟩ , ∀vh ∈ Vh, (2.16)
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and
⟨∇zh , ∇vh⟩+ ⟨kzh , vh⟩ = ⟨−µ△ηρS + kηρS , vh⟩ , ∀vh ∈ Vh, (2.17)

receptively. Then we arrive at the following result.

Theorem 2.4. If we define ζvh = ⟨vh , −µ△η2ρSd + kη2ρSd⟩, for any function vh ∈ Vh, then
wh which is the solution of (2.13) is

wh = uh −
(
βf − ζuh

βs − ζzh

)
zh. (2.18)

Proof. In light of definition of ζwh
, (2.13) can be rewritten by, for all vh ∈ Vh,

⟨∇wh , ∇vh⟩+ ⟨kwh , vh⟩ −
ζwh

βs
⟨−µ△ηρS + kηρS , vh⟩

= ⟨f , vh⟩ −
βf
βs

⟨−µ△ηρS + kηρS , vh⟩ .

Since bTA−1F ∈ R, the Sherman-Morrison formulation (2.15) yields

wh = A−1F − A−1abTA−1

a+ bTA−1a
F

= A−1F − bTA−1F

1 + bTA−1a
A−1a.

(2.19)

From (2.16) and (2.17),

A−1F = uh −
βf
βs
zh.

Also, A−1a = zh and bT vh = −ζvh/βs, for vh ∈ Vh implies that

bTA−1a = −ζzh/βs and bTA−1F =
−ζuh

βs
+
βf
β2s
ζzh .

Therefore, (2.19) becomes

wh = uh −
βf
βs
zh −

− ζuh
βs

+
βf

β2
s
ζzh

1− ζzh
βs

zh

= uh −
(
βf
βs

−
βsζuh

− βfζzh
βs(βs − ζzh)

)
zh

= uh −
(
βf (βs − ζzh)− βsζuh

+ βfζzh
βs(βs − ζzh)

)
zh = uh −

(
βf − ζuh

βs − ζzh

)
zh.

the proof is complete. �
We so construct the following DSFM using (2.4).

Algorithm 1 (FE-DSFM for Helmholtz equation). Let wh be discrete smooth part and let αh

be discrete stress intensity factors in (2.13).
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Step 1: Find (uh, zh) as the solution of (2.16) and (2.17).
Step 2: Compute wh by (2.18).
Step 3: Compute αh by second part of (2.13).

We now apply Algorithm 1 to more complicated problem including several reentrant corners.
The solution u can be expressed by

u = w +

n∑
i=1

αiηρiSi,

and the Helmholtz equation becomes

−µ△w + kw +

n∑
i=1

αi(−µ△ηρiSi + kηρiSi) = f in Ω,

w = g on ∂Ω.

(2.20)

We can choose cut off functions ηρi and η2ρj to have mutually disjoint support to hold
⟨−µ△ηρiSi + kSi , η2ρjSdj⟩ = 0 if i ̸= j. In light of testing (2.20) by η2ρiSdi, we readily
obtain

αi =
1

βsi
(βfi − ⟨w , −µ△η2ρiSdi + kSdi⟩). (2.21)

The finite element weak form of system (2.20) and (2.21) is to find wh ∈ Vh and αhi ∈ R,
i = 1 · · ·n, satisfying, for all vh ∈ Vh,

⟨∇wh , ∇vh⟩+ ⟨kwh , vh⟩+
n∑

i=1

αhi ⟨−µ△ηρiSi + kηρiSi , vh⟩ = ⟨f , vh⟩ ,

αhi =
1

βsi
(βfi − ⟨wh , −µ△η2ρiSdi + kη2ρiSdi⟩),

(2.22)

and its matrix form becomes

(A+

n∑
i=1

aibi
T )wh = F.

Let ζi,vh = ⟨vh , −µ△η2ρiSdi + kSdi⟩ and zih be the solution of

⟨∇zih , ∇vh⟩+ ⟨kzih , vh⟩ = ⟨−µ△ηρiSi + kηρiSi , vh⟩ , ∀vh ∈ Vh. (2.23)

In conjunction with Theorem 2.4, wh would be

wh = uh −
n∑

i=1

(
βfi − ζuh

βsi − ζzih

)
zih. (2.24)

Finally we arrive at DSFM to solve Helmholtz equations (1.2) on domain Ω including several
reentrant corners.

Algorithm 2 (Multiple singularities version of Algorithm 1). Let wh be discrete smooth part
and let αih be discrete stress intensity factors of αi

Step 1: Find uh and zih, i = 1 . . . n, as the solution of (2.16) and (2.23).
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Step 2: Compute wh by (2.24).
Step 3: Compute αh by second part of (2.22).

3. DUAL SINGULAR FUNCTION METHOD FOR THE HEAT EQUATION

In this section, we extend Algorithm 1 to solve the heat equation (1.1) using the backward
Euler time discrete formula (BDF1) and the second order backward Euler time discrete formula
(BDF2). We first consider BDF1 for heat equation:

un+1 − un

τ
− µ△un+1 = fn+1. (3.1)

We already know in [5] that the form of singular solution is same to that of Helmholtz equation.
It means that the solution of (1.1) can be expressed by

u(x, t) = w(x, t) + α(t)ηρS, (3.2)

and (3.1) can be rewritten by

(wn+1 − µτ△wn+1) + αn+1(ηρS − µτ△ηρS) = τfn+1 + wn + αnηρS. (3.3)

Since (3.3) and (2.9) have similar expression, the same strategy to Algorithm 1 leads us the
solver of (3.3): find wn+1

h ∈ Vh and αn+1
h ∈ R satisfying, for all vh ∈ Vh,

µτ
⟨
∇wn+1

h , ∇vh
⟩
+
⟨
wn+1
h , vh

⟩
+ αn+1

h ⟨ηρS − µτ△ηρS , vh⟩
= τ

⟨
fn+1 , vh

⟩
+ ⟨∇wn

h , ∇vh⟩+ αn
h ⟨ηρS , vh⟩ ,

(3.4)

αn+1 =
1

βs

(
τβn+1

f + ⟨wn + αnηρS , η2ρSd⟩ − ζwn+1

)
,

where
βs = ⟨ηρS − µτ△ηρS , η2ρSd⟩ , βn+1

f =
⟨
f(tn+1) , η2ρSd

⟩
,

ζwn+1 =
⟨
wn+1 , η2ρSd − µτ△η2ρSd

⟩
.

The matrix form of the system becomes (2.14) and it can be solved by (2.15). To construct
algorithm for heat equations, we denote zh be the solution of

µτ ⟨∇zh , ∇vh⟩+ ⟨zh , vh⟩ = ⟨−µτ△ηρS + ηρS , vh⟩ , ∀vh ∈ Vh. (3.5)

Then we arrive at DSFM with BDF1 scheme to solve heat equation.

Algorithm 3 ( FE-DSFM with backward Euler for Heat equation). Let zh be the solution of
(3.5) and set û0h = u0. Repeat for 1 ≤ n ≤ N :

Step 1: Find un+1
h as the solution of

µτ
⟨
∇un+1

h , ∇vh
⟩
+
⟨
un+1
h , vh

⟩
= τ

⟨
fn+1 , vh

⟩
+ ⟨ûnh , vh⟩ , ∀vh ∈ Vh.

Step 2: Compute wn+1
h

wn+1
h = un+1

h −

(
τβf + ⟨ûnh , η2ρSd⟩ − ζun+1

h

βs − ζzh

)
zh.
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Step 3: Compute αn+1
h by second part of (3.4).

Step 4: Update ûn+1
h = wn+1

h + αn+1
h ηρS.

Remark 1. The Sherman-Morrison formulation (2.15) requires to solve linear system 2 times
for Poisson and Helmholtz equations, but Algorithm 3 need to apply linear solver only 1 at each
iteration, so this algorithm use same linear solvers per each time iteration to standard method.
And Algorithm 3 has optimal accuracy behavior for corner singularities problem, in contrast
standard numerical method.

We now construct DSFM for heat equation with backward Euler formula (BDF2) time dis-
cretization:

3un+1 − 4un + un−1

2τ
− µ△un+1 = fn+1.

By the same manner with the case BDF1, (3.2) leads us

3wn+1 − 2µτ△wn+1 + αn+1(3ηρS − 2µτ△ηρS)
= 2τfn+1 + 4(wn + αnηρS)− (wn−1 + αn−1ηρS),

(3.6)

and testing (3.6) with vh ∈ Vh and with η2ρiSdi yield

2µτ
⟨
∇wn+1

h , ∇vh
⟩
+ 3

⟨
wn+1
h , vh

⟩
+ αn+1

h ⟨3ηρS − 2µτ△ηρS , vh⟩
= 2τ

⟨
fn+1 , vh

⟩
+ 4(⟨∇wn

h , ∇vh⟩+ αn
h ⟨ηρS , vh⟩)

− (
⟨
∇wn−1

h , ∇vh
⟩
+ αn−1

h ⟨ηρS , vh⟩), ∀vh ∈ Vh,

αn+1
h =

1

βs
(Fn+1

h − ζwn+1
h

),

(3.7)

where

Fn+1 = 2τ
⟨
fn+1 , η2ρSd

⟩
+ 4(⟨wn , η2ρSd⟩+ αn ⟨ηρS , η2ρSd⟩)
− (
⟨
wn−1 , η2ρSd

⟩
+ αn−1 ⟨ηρS , η2ρSd⟩),

ζwn+1 =
⟨
wn+1 , 3η2ρSd − 2µτ△η2ρSd

⟩
and βs = ⟨3ηρS − 2µτ△ηρS , η2ρSd⟩ .

Since this system also constructs a linear system of the form

(A+ abT )wh = F,

we can find wh by Theorem 2.4, that is

wn+1
h = un+1

h −

(
Fn+1
h − ζun+1

h

βs − ζzh

)
zh, (3.8)

where zh is the solution of

2µτ ⟨∇zh , ∇vh⟩+ 3 ⟨zh , vh⟩ = ⟨−2µτ△ηρS + 3ηρS , vh⟩ , ∀vh ∈ Vh.
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If we denote ûnh = wn
h+α

n
hηρS and ûn−1

h = wn−1
h +αn−1

h ηρS, then un+1
h becomes the solution

of, for all vh ∈ Vh,

2µτ
⟨
∇un+1

h , ∇vh
⟩
+ 3

⟨
un+1
h , vh

⟩
= 2τ

⟨
fn+1 , vh

⟩
+ 4 ⟨ûnh , vh⟩ −

⟨
ûn−1
h , vh

⟩
.

(3.9)

Finally, we arrive at BDF2 DSFM to solve heat equation (1.1).

Algorithm 4 ( FE-DSFM with BDF2 for Heat equation). Let wn+1
h be discrete smooth part

and αn+1
h be discrete stress intensity factors of α(t) of n + 1 step. Initially given u0, set w1

h

and α1
h using the backward FE-DSFM. Repeat for 1 ≤ n ≤ N

Step 1: Find un+1
h as the solution of (3.9).

Step 2: Compute wn+1
h by (3.8).

Step 3: Compute αn+1
h by second part of (3.7).

4. NUMERICAL TEST

In this section, we document the computational performance of each algorithm within a
polygonal domain with reentrant corners. We use cut-off function in (2.7) with

p(r) =
15

16

{ 8

15
−
(4r
ρ

− 3
)
+

2

3

(4r
ρ

− 3
)3

− 1

5

(4r
ρ

− 3
)5}

.

All computations are performed with the conforming P1 finite element and 6 points quadrature
rule.

Example 4.1. We consider Helmholtz equations (1.2) on the Γ shape computational domain
([−1, 1]× [−1, 1])r ([0, 1]× [−1, 0]). We choose the smooth part of the solution as

w =

{
sin(2πx)(1/2y2 + y)(y2 − 1), (y < 0)

sin(2πx)(−1/2y2 + y)(y2 − 1), (y ≥ 0),

and set the exact solution
u = w + αηρS

with α = 3.0 and ρ = 0.4. Also, the singular function S is given by

S(r, θ) = rπ/ω sin(
π

ω
θ)

with ω = 3
2π. The forcing term f is determined to become k = 1.0 and ν = 1.0.

Table 1 is the error decay of the standard finite element method for Example 4.1. The losing
convergence orders is natural behavior because of u /∈ H2(Ω). Table 2 is the error decay of the
DSFM with Algorithm 1 and displays optimal error decay in contrast with results in Table 1

The next example is a multiple corner singularities case.
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TABLE 1. Error table for Example 4.1 with Standard FEM.

∥u− uh∥0 ∥Iu− uh∥∞ ∥u− uh∥1
h Errors Order Errors Order Errors Order

1/8 7.162e-02 1.065e-01 1.604e-00
1/16 2.502e-02 1.52 3.922e-02 1.44 6.641e-01 1.27
1/32 7.051e-03 1.83 2.460e-02 0.67 2.183e-01 1.60
1/64 2.120e-03 1.73 1.573e-02 0.64 8.899e-02 1.29
1/128 6.745e-04 1.65 9.932e-03 0.66 4.868e-02 0.87
1/256 2.372e-04 1.51 6.263e-03 0.67 2.980e-02 0.71

TABLE 2. Error table for Example 4.1 with Algorithm 1.

∥w − wh∥0 ∥Iw − wh∥∞ ∥w − wh∥1 |α− αh|

h Errors Order Errors Order Errors Order Errors Order

1/8 2.312e-02 1.085e-02 1.879e-01 3.639e-03
1/16 5.974e-03 1.95 2.713e-03 2.00 5.211e-02 1.85 2.081e-03 0.81
1/32 1.506e-03 1.99 6.785e-04 2.00 1.502e-02 1.80 5.095e-04 2.03
1/64 3.773e-04 2.00 1.696e-04 2.00 4.567e-03 1.72 9.663e-05 2.40
1/128 9.437e-05 2.00 4.239e-05 2.00 1.464e-03 1.64 2.484e-05 1.96
1/256 9.360e-05 2.00 1.060e-05 2.00 4.884e-04 1.58 5.627e-06 2.14

Example 4.2. Let the computational domain be ([−2, 2] × [−2, 2]) r ([−1, 1] × [−1.1]) in-
cluding 4 reentrant corners. Let smooth part of the solution be given by

w =

{
sin(πx)(1/2y2 + y)(y + 1)(y + 2), (y < 0)

sin(πx)(−1/2y2 + y)(y − 1)(y − 2), (y ≥ 0).

In this experiment, we choose k = 1.0, ν = 1.0 and set the forcing term f to be the exact
solution

u = w + α1ηρ1S1 + α2ηρ2S2 + α3ηρ3S3 + α4ηρ4S4,

where ρ1 = ρ2 = ρ3 = ρ4 = 0.4 and stress intensity factors α1 = −1.0, α2 = 2.0, α3 = −3.0
and α4 = 4.0.

Table 3 is the mesh analysis of Algorithm 2 which is based on (2.24). This results also
display optimal error decay rates.

We now perform numerical simulations for the heat equations.

Example 4.3. We consider heat equation with Γ shape computational domain ([−1, 1] ×
[−1, 1]) r ([0, 1] × [−1, 0]). We use t as time variable and we perform Algorithms 3 and
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FIGURE 1. Domain, mesh and ηρiSi, (i = 1 · · · 4) for Example 4.2

TABLE 3. Error table for Example 4.2 with Algorithm 2.

∥w − wh∥0 ∥Iw − wh∥∞ ∥w − wh∥1
∑4

i=1 |αi − αih|

h Errors Order Errors Order Errors Order Errors Order

1/4 5.984e-02 1.442e-02 3.938e-01 4.322e-02
1/8 1.642e-02 1.87 3.976e-03 1.86 1.280e-01 1.62 2.878e-02 0.59
1/16 4.175e-03 1.98 9.890e-04 2.01 4.058e-02 1.66 4.921e-03 2.55
1/32 1.047e-03 2.00 2.516e-04 1.98 1.328e-02 1.61 8.649e-04 2.51
1/64 2.626e-04 2.00 6.315e-05 1.99 4.485e-03 1.57 2.715e-04 1.67
1/128 6.562e-05 2.00 1.582e-05 2.00 1.545e-03 1.54 6.048e-05 2.17

4 with smooth part of solution

w =

{
sin(t) sin(2πx)(1/2y2 + y)(y2 − 1), (y < 0)

sin(t) sin(2πx)(−1/2y2 + y)(y2 − 1), (y ≥ 0),

and exact solution
u = w + exp(t)ηρS in [0, 1]× Ω,

where ρ = 0.4 and forcing term is also determined by ν = 1.0. In this example, the stress
intensity factor depends on variable t and Tables 4∼6 are mesh analysis at t = 1.

Since backward Euler method is only 1st order scheme for time, we set τ = 16h2 to check
the optimal convergence rates and Table 4 shows the optimal results of Algorithm 3.

We apply the BDF2 time discretization scheme, Algorithm 4, for the same example. Since it
is second order method, we set τ = 1

2h, and so this computational cost is much more effective
than Algorithm 3.

Table 5 is results of the standard finite element method with BDF2 time discretization for
Example 4.3. Since u /∈ L2([0, 1] : H2), the errors do not decay with optimal order.
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TABLE 4. Error table for Example 4.3 with Algorithm 3.

∥w − wh∥0 ∥Iw − wh∥∞ ∥w − wh∥1 |α− αh|

h τ Errors Order Errors Order Errors Order Errors Order

1/8 1/4 2.009e-02 1.032e-02 1.615e-01 6.415e-03
1/16 1/16 5.205e-03 1.95 2.600e-03 1.99 4.475e-02 1.85 6.552e-04 3.29
1/32 1/64 1.314e-03 1.99 6.520e-04 2.00 1.284e-02 1.80 1.798e-04 1.87
1/64 1/256 3.293e-04 2.00 1.634e-04 2.00 3.887e-03 1.72 7.150e-05 1.33
1/128 1/1024 8.236e-05 2.00 4.085e-05 2.00 1.240e-03 1.65 1.733e-05 2.04
1/256 1/4096 2.060e-05 2.00 1.021e-05 2.00 4.126e-04 1.59 4.825e-06 1.84

TABLE 5. Error table for Example 4.3 with Standard FEM with BDF2 time discretization.

∥u− uh∥0 ∥Iu− uh∥∞ ∥u− uh∥1
h τ Errors Order Errors Order Errors Order

1/8 1/16 6.447e-02 9.646e-02 1.452e-00
1/16 1/32 2.254e-02 1.52 3.551e-02 1.44 6.013e-01 1.27
1/32 1/64 6.361e-03 1.83 2.228e-02 0.67 1.977e-01 1.60
1/64 1/128 1.916e-03 1.73 1.425e-02 0.64 8.061e-02 1.29
1/128 1/256 6.101e-04 1.65 8.999e-03 0.66 4.410e-02 0.87
1/256 1/512 2.148e-04 1.51 5.675e-03 0.67 2.700e-02 0.71

TABLE 6. Error table for Example 4.3 with Algorithm 4.

∥w − wh∥0 ∥Iw − wh∥∞ ∥w − wh∥1 |α− αh|

h τ Errors Order Errors Order Errors Order Errors Order

1/8 1/16 1.956e-02 9.283e-03 1.587e-01 2.984e-03
1/16 1/32 5.057e-03 1.95 2.324e-03 2.00 4.402e-02 1.85 1.738e-03 0.78
1/32 1/64 1.275e-03 1.99 5.813e-04 2.00 1.267e-02 1.80 4.257e-04 2.03
1/64 1/128 3.195e-04 2.00 1.453e-04 2.00 3.851e-03 1.72 8.058e-05 2.40
1/128 1/256 7.990e-05 2.00 3.632e-05 2.00 1.233e-03 1.64 2.072e-05 1.96
1/256 1/512 1.998e-05 2.00 9.079e-06 2.00 4.113e-04 1.58 4.690e-06 2.14

Table 6 is error table for Algorithm 4 for Example 4.3 and the errors converge to 0 with
optimal rate. So we can conclude that DSFM for heat equation has optimal convergence rate
for corner singularity problems.

Finally, Figure 2 is error evolutions of smooth part of u on the L2 space and errors of stress
intensity factors. It displays smooth error propagation on time.



A FEM-DSFM FOR HELMHOLTZ AND HEAT EQUATIONS 113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
x 10

−3

Time

E
rr

or

 

 

 ||w−w
h
||

0
  with h=1/32 τ =1/64

 |α −α
h
|     with h=1/32 τ =1/64

 ||w−w
h
||

0
  with h=1/64 τ =1/128

 |α −α
h
|     with h=1/64 τ =1/128

FIGURE 2. Error evolution of Example 4.3 with Algorithm 4.
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