• Title/Summary/Keyword: Equation of Motion Solution

Search Result 280, Processing Time 0.028 seconds

A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit (자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구)

  • Jo, Heung-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.47-51
    • /
    • 1996
  • The Cylindrical Shell Equation is one of the fundamental tools in the study of the noise analysis in the cylindrical shell. Therefore, lot of the acousticians induced many cylindrical shell motion equations.[1] In the Reference[6], we introduced the newly induced cylindrical Shell Equation and Junger and Feit's shell equation[5], and computed the free wave number with the linear Equation with the supposed solution, in the case of the free motion of the shell. In this paper, we compared above cylindrical shell equations by using dispersion curve of free wave number and we describe the physical mean for the dispersion curve with ring-frequency and ring-extention-frequency. With this result, we proves the useful of a newly induced cylindrical shell equation and we can analyse the Structure-Borne Sound of the shell with this equation in the application.

  • PDF

WEAK SOLUTIONS OF THE EQUATION OF MOTION OF MEMBRANE WITH STRONG VISCOSITY

  • Hwang, Jin-Soo;Nakagiri, Shin-Ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.443-453
    • /
    • 2007
  • We study the equation of a membrane with strong viscosity. Based on the variational formulation corresponding to the suitable function space setting, we have proved the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

ON FUZZY STOCHASTIC DIFFERENTIAL EQUATIONS

  • KIM JAI HEUI
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.153-169
    • /
    • 2005
  • A fuzzy stochastic differential equation contains a fuzzy valued diffusion term which is defined by stochastic integral of a fuzzy process with respect to 1-dimensional Brownian motion. We prove the existence and uniqueness of the solution for fuzzy stochastic differential equation under suitable Lipschitz condition. To do this we prove and use the maximal inequality for fuzzy stochastic integrals. The results are illustrated by an example.

Motion Planning of a Robot Manipulator for Conveyor Tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동적계획)

  • 박태형;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.995-1006
    • /
    • 1989
  • If robots have the ability to track the parts on a moving conveyor belt, the efficiency of the manipulation tasks will be increased. This paper presents a motion planning algorithm for conveyor tracking. Tracking trajectory of a robot manipulator is determined by belt speed, initial part position, and initial robot position. Torque limit, maximum velocity, maximum acceleration and maximum jerk are also taken into account. To obtain the tracking solution, the problem is converted to the linear quadratic tracking problem. We describe the manipulator dynamics as second order state equation using parametric functions. Constraints on torques and smoothness are converted to those on input and state variables. The solution of the state equation which minimizes the performance index is obtained by dynamic programming method. Numerical examples are then presented to demonstrate the utility of the motion planning method developed.

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin (부력엔진 독립시험 모듈 해양공학수조 시험)

  • Chong-Moo Lee;Hyung-Woo Kim;Tae-Hwan Joung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

A Study on the Dynamic Load Model of Truss Bridge subjected to Moving Train Loads (열차하중을 받는 트러스교의 동적하중모형 연구)

  • 안주옥;박상준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.111-118
    • /
    • 1996
  • Dynamic load models which show the practical behavior of truss bridge subjected to moving train load are presented. Three basically approaches are available for evaluating structural response to dynamic effects : moving force, moving mass, and influence moving force and mass. Simple warren truss bridge model is selected in this research, and idealized lumped mass system, modelled as a planar structure. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of truss bridge and moving train load. The solution of the uncoupled equations of motion is solved by Newmark-$\beta$ method. The results show that dynamic response of moving mass and static analysis considering the impact factor specified in the present railway bridge code was nearly the same. Generally, the dynamic response of moving force is somewhat greater than that of moving mass. The dynamic load models which are presented by this study are obtained relatively adequate load model when apply to a truss bridge.

  • PDF

Theory of Coagulation(I) Coagulation Theory Including Hydrodynamics and Interparticle Forces (응집의 이론 (I) - 수리동역학과 입자간 작용력을 고려한 응집의 모델 -)

  • Han, Moo Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.65-77
    • /
    • 1995
  • The kinetics of flocculation of heterodisperse suspension like those in water treatment plants and natural water system are usually described by the Smoluchowski equation, which incorporates collision frequency functions for particle collisions by Brownian motion, fluid shear, and differential sedimentation. These collisionfrequeney functions have been based on a rectilinear view of collisions, i.e., one that ignores short-range forces and changes in fluid motion as particles approach one another. In this research, a curvilinear approach, i.e., one that accounts for hydrodynamic forces and particle interaction in the collision of two different size particles is developed. Collision efficiency factors of each mechanism can be calculated by trajectory analysis (fluid shear and differential sedimentation) or the solution of diffusion equation (Brownian motion). The results are presented as a set of corrections to the rectilinear collision frequency functions for each mechanism.

  • PDF

Wave Response and Ship Motion in a Harbor Excited by Long Waves

  • Cho, Il-Hyoung;Choi, Hang-S.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • Herein the surge-heave-pitch motion of a ship in harbor has been analyzed within the framework of linear potential theory. The ship is assumed to be slender and moored at an arbitrary position in a rectangular harbor with a constant depth. The coast line is assumed to be straight. The ship and harbor responses to incident long waves are represented in terms of Green's function, which is the solution of tole Helmholtz equation satisfying necessary boundary conditions. An integral equation is obtained from matching condition between harbor and ocean solutions, and it is replaced by an equivalent variational form. Numerical results sallow that the ship motion can be highly amplified at the frequencies, where the harbor is resonated by the incident wave. At the resonant frequencies, the added mass for vertical motions becomes negative and the damping forte changes abruptly.

  • PDF