• Title/Summary/Keyword: Equation of Motion

Search Result 1,826, Processing Time 0.031 seconds

Analysis of 32m aerostat gust load using non-linear cable equation (비선형 테더 방정식을 이용한 에어로스탯 돌풍하중해석)

  • Kang, Wang-Gu;Lee, In;Kim, Dong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.757-761
    • /
    • 2008
  • The aerostat dynamic equation of motion has been built including the tether cable dynamic effects. A numerical program to solve the derived equation of motion has been developed. The dynamic motion of the 32m aerostat has been analyzed under discrete gust and continuous turbulence. The aerostat behaviors under discrete gust which represents a deterministic approach for determining design loads for manned aircraft are solved to verify the effect of aerostat mechanical properties on the aerostat dynamic behavior. Continuous turbulences are simulated for each given altitude, translational mean wind velocity and gust intensity. Dynamic behaviors of the 32m aerostat are simulated for each continuous turbulence conditions. Translational and vertical velocity and pitching behavior and tether reaction force are monitored for each simulation.

  • PDF

Analysis of Opening Characteristics for Puffer GCB (파퍼식 가스차단기의 동작특성 해석)

  • Kim, Hong-Gyu;Jeong, Jin-Gyo;Park, Gyeong-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.560-567
    • /
    • 2002
  • This paper presents the calculation of opening characteristics for puffer GCB with the equations of the flow field and the motion of the driving mechanism. To obtain the stroke curve, the motion equation is solved simultaneously with the Euler equations. For a given Piston location, the flow field is solved. The pressure inside the Puffer chamber is then used to calculate the moving velocity and the new position of the piston. The FVFLIC method is employed to solve the axisymmetric Euler equations and the motion equation is solved by the Runge-Kutta method. The method is applied to the puffer GCB model and the stroke curve and the pressure rise in puffer chamber under no load condition are compared with the measured ones.

Dynamic Analysis and Experiment of Linear Ocsiilatory Actuator (리니어 진동 액튜에이터의 동특성 해석 및 실험)

  • Jang, S.M.;Jeong, B.S.;Lee, S.H.;Jeong, S.S.;Kweon, C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.113-115
    • /
    • 2003
  • Recently, many linear motion generators and are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loud speakers tostirling engine driven linear reciprocatings, alternators, compressors, textile machines etc. In this paper the dynamic performance with load is computed by a general purpose method, which the equation of electromagnetic field, the equation of electric circuit and the equation of motion are coupled together. We fumed out the driving system and the dynamic characteristics of current, voltage and displacement is confirmed experiment.

  • PDF

Prediction Equation of Spectral Acceleration Responses in Low-to-Moderate Seismic Regions using Domestic and Overseas Earthquake Records (국내·외 계기지진 정보를 활용한 중·약진 지역의 스펙트럴 가속도 응답 예측식)

  • Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • This study develops an empirical prediction equation of spectral acceleration responses of earthquakes which can induce structural damages. Ground motion records representing hazards of low-to-moderate seismic regions were selected and organized with several influential factors affecting the response spectra. The empirical equation and estimator coefficients for acceleration response spectra were then proposed using a robust nonlinear optimization coupled with a regression analysis. For analytical verification of the prediction equation, response spectra used for low-to-moderate seismic regions were estimated and the predicted results were comparatively evaluated with measured response spectra. As a result, the predicted shapes of response spectra can simulate the graphical shapes of measured data with high accuracy and most of predicted results are distributed inside range of correlation of variation (COV) of 30% from perfectly correlated lines.

Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control (부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어)

  • Lee, Jong-Kyu;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation

  • Fadodun, Odunayo O.
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.303-309
    • /
    • 2019
  • This study investigates axisymmetric fractional vibration of an isotropic hyperelastic semi-linear thin disc with a view to examine effects of finite deformation associated with the material of the disc and effects of fractional vibration associated with the motion of the disc. The generalized three-dimensional equation of motion is reduced to an equivalent time fraction one-dimensional vibration equation. Using the method of variable separable, the resulting equation is further decomposed into second-order ordinary differential equation in spatial variable and fractional differential equation in temporal variable. The obtained solution of the fractional vibration problem under consideration is described by product of one-parameter Mittag-Leffler and Bessel functions in temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem in literature. Finally, and amongst other things, the Cauchy's stress distribution in thin disc under finite deformation exhibits nonlinearity with respect to the displacement fields whereas in infinitesimal deformation hypothesis, these stresses exhibit linear relation with the displacement field.

A Study of Comparison with Free Wave Number Between a New Cylinderical Wave Equation and the Wave Equation by Junger and Feit (자유파수를 이용한 새로운 실린더 운동방정식과 Junger and Feit의 실린더 운동방정식의 비교연구)

  • Jo, Heung-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.47-51
    • /
    • 1996
  • The Cylindrical Shell Equation is one of the fundamental tools in the study of the noise analysis in the cylindrical shell. Therefore, lot of the acousticians induced many cylindrical shell motion equations.[1] In the Reference[6], we introduced the newly induced cylindrical Shell Equation and Junger and Feit's shell equation[5], and computed the free wave number with the linear Equation with the supposed solution, in the case of the free motion of the shell. In this paper, we compared above cylindrical shell equations by using dispersion curve of free wave number and we describe the physical mean for the dispersion curve with ring-frequency and ring-extention-frequency. With this result, we proves the useful of a newly induced cylindrical shell equation and we can analyse the Structure-Borne Sound of the shell with this equation in the application.

  • PDF

Dynamic Analysis of a Tilted HDD Spindle System due to Roundness (진원도 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.840-846
    • /
    • 2007
  • This paper investigates the dynamic behavior of a HDD spindle system due to the imperfect roundness of a rotating shaft. The shaft of a spindle motor rotates with eccentricity by the unbalanced mass of the rotating part. The eccentricity generates the run-out of a spindle motor which results in the eccentric motion of a rotating part. Roundness of a shaft affects this motion which limits the memory capacity of a HDD. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the roundness. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to characterize the motion of a rotating part. This research shows that the roundness of a rotating shaft causes the excitation frequency with integer multiple of a rotating frequency.

  • PDF

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.